Local summer temperature changes over the past 440 ka revealed by the total air content in the Antarctic EPICA Dome C ice core
-
Published:2024-06-11
Issue:6
Volume:20
Page:1269-1282
-
ISSN:1814-9332
-
Container-title:Climate of the Past
-
language:en
-
Short-container-title:Clim. Past
Author:
Raynaud Dominique, Yin QiuzhenORCID, Capron EmilieORCID, Wu Zhipeng, Parrenin FrédéricORCID, Berger André, Lipenkov Vladimir
Abstract
Abstract. Seasonal temperature reconstructions from ice cores are missing over glacial–interglacial timescales, preventing a good understanding of the driving factors of Antarctic past climate changes. Here the total air content (TAC) record from the Antarctic EPICA Dome C (EDC) ice core is analyzed over the last 440 ka (thousand years). While the water isotopic record, a tracer for annual mean surface temperature, exhibits a dominant ∼100 kyr cyclicity, the TAC record is associated with a dominant ∼40 kyr cyclicity. Our results show that the TAC record is anti-correlated with the mean insolation over the local astronomical summer half-year. They also show for the first time that it is highly anti-correlated with local summer temperature simulated with an Earth system model of intermediate complexity. We propose that (1) the local summer insolation controls the local summer temperature; (2) the latter, through the development of temperature gradients at the near-surface of the ice sheet (<2 m), is affecting the surface snow structure; and (3) those snow structure changes propagating down to the bottom of the firn through densification are eventually controlling the pore volume at the bubble close-off and consequently the TAC. Hence, our results suggest that the EDC TAC record could be used as a proxy for local summer temperature changes. Also, our new simulations show that the mean insolation over the local astronomical summer half-year is the primary driver of Antarctic summer surface temperature variations, while changes in atmospheric greenhouse gas (GHG) concentrations and Northern Hemisphere (NH) ice sheet configurations play a more important role in Antarctic annual surface temperature changes.
Funder
Fonds De La Recherche Scientifique - FNRS Agence Nationale de la Recherche
Publisher
Copernicus GmbH
Reference50 articles.
1. Alley, R. B.: Densification and Recrystallization of Firn at Dome C, East Antarctica, Institute of Polar Studies, The Ohio State University, Columbus, Ohio, https://kb.osu.edu/items/43b2d2ab-503a-5a53-a962-c433e371c064 (last access: 7 June 2024), 1980. 2. Alley, R. B.: Firn densification by grain boundary sliding, J. Phys. (Paris), 48, 249–256, 1987. 3. Anderson, D. L. and Benson, G. S.: The densification and diagenesis of snow: properties, processes and applications, in: Ice and snow: properties, processes, and applications, edited by: Kingery, V. V. D., MIT Press, Cambridge, MA, 391–411, https://authors.library.caltech.edu/records/jm9c7-3d977 (last access: 7 June 2024), 1963. 4. Arnaud, L.: Modélisation de la transformation de la neige en glace à la surface des calottes polaires, étude du transport des gaz dans ces milieux poreux, PhD thesis, Université Joseph Fourier, Grenoble, https://archivesic.ccsd.cnrs.fr/UNIV-GRENOBLE1/tel-00709566 (last access: 7 June 2024), 1997. 5. Bazin, L., Landais, A., Lemieux-Dudon, B., Toyé Mahamadou Kele, H., Veres, D., Parrenin, F., Martinerie, P., Ritz, C., Capron, E., Lipenkov, V., Loutre, M.-F., Raynaud, D., Vinther, B., Svensson, A., Rasmussen, S. O., Severi, M., Blunier, T., Leuenberger, M., Fischer, H., Masson-Delmotte, V., Chappellaz, J., and Wolff, E.: An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120–800 ka, Clim. Past, 9, 1715–1731, https://doi.org/10.5194/cp-9-1715-2013, 2013.
|
|