An overview of the HIBISCUS campaign

Author:

Pommereau J.-P.,Garnier A.,Held G.,Gomes A.-M.,Goutail F.,Durry G.,Borchi F.,Hauchecorne A.,Montoux N.,Cocquerez P.,Letrenne G.,Vial F.,Hertzog A.,Legras B.,Pisso I.,Pyle J. A.,Harris N. R. P.,Jones R. L.,Robinson A.,Hansford G.,Eden L.,Gardiner T.,Swann N.,Knudsen B.,Larsen N.,Nielsen J.,Christensen T.,Cairo F.,Pirre M.,Marécal V.,Huret N.,Riviére E.,Coe H.,Grosvenor D.,Edvarsen K.,Di Donfrancesco G.,Ricaud P.,Berthelier J.-J.,Godefroy M.,Seran E.,Longo K.,Freitas S.

Abstract

Abstract. HIBISCUS was a field campaign for investigating the impact of deep convection on the Tropical Tropopause Layer (TTL) and the Lower Stratosphere, which took place during the Southern Hemisphere summer in February–March 2004 in the State of São Paulo, Brazil. Its objective was to provide a set of new observational data on meteorology, tracers of horizontal and vertical transport, water vapour, clouds, and chemistry in the tropical UT/LS from balloon observations at local scale over a land convective area, as well as at global scale using circumnavigating long-duration balloons. Overall, the composition of the TTL, the region between 14 and 19 km of intermediate lapse rate between the almost adiabatic upper troposphere and the stable stratosphere, appears highly variable. Tracers and ozone measurements performed at both the local and the global scale indicate a strong quasi-horizontal isentropic exchange with the lowermost mid-latitude stratosphere suggesting that the barrier associated to the tropical jet is highly permeable at these levels in summer. But the project also provides clear indications of strong episodic updraught of cold air, short-lived tracers, low ozone, humidity and ice particles across the lapse rate tropopause at about 15 km, up to 18 or 19 km at 420–440 K potential levels in the lower stratosphere, suggesting that, in contrast to oceanic convection penetrating little the stratosphere, fast daytime developing land convective systems could be a major mechanism in the troposphere-stratosphere exchange at the global scale. The present overview is meant to provide the background of the project, as well as overall information on the instrumental tools available, on the way they have been used within the highly convective context of the South Atlantic Convergence Zone, and a brief summary of the results, which will be detailed in several other papers of this special issue.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3