Using R in hydrology: a review of recent developments and future directions
-
Published:2019-07-12
Issue:7
Volume:23
Page:2939-2963
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
Slater Louise J.ORCID, Thirel GuillaumeORCID, Harrigan ShaunORCID, Delaigue OlivierORCID, Hurley AlexanderORCID, Khouakhi AbdouORCID, Prosdocimi IlariaORCID, Vitolo ClaudiaORCID, Smith KatieORCID
Abstract
Abstract. The open-source programming language R has gained a central place in the hydrological sciences over the last decade, driven by the availability of diverse hydro-meteorological data archives and the development of open-source computational tools. The growth of R's usage in hydrology is reflected in the number of newly published hydrological packages, the strengthening of online user communities, and the popularity of training courses and events. In this paper, we explore the benefits and advantages of R's usage in hydrology, such as the democratization of data science and numerical literacy, the enhancement of reproducible research and open science, the access to statistical tools, the ease of connecting R to and from other languages, and the support provided by a growing community. This paper provides an overview of a typical hydrological workflow based on reproducible principles and packages for retrieval of hydro-meteorological data, spatial analysis, hydrological modelling, statistics, and the design of static and dynamic visualizations and documents. We discuss some of the challenges that arise when using R in hydrology and useful tools to overcome them, including the use of hydrological libraries, documentation, and vignettes (long-form guides that illustrate how to use packages); the role of integrated development environments (IDEs); and the challenges of big data and parallel computing in hydrology. Lastly, this paper provides a roadmap for R's future within hydrology, with R packages as a driver of progress in the hydrological sciences, application programming interfaces (APIs) providing new avenues for data acquisition and provision, enhanced teaching of hydrology in R, and the continued growth of the community via short courses and events.
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference209 articles.
1. Abbott, M. B.: Hydroinformatics: information technology and the aquatic environment, Avebury Technical, Aldershot, 1991. a 2. Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, 2017. a 3. Albers, S.: tidyhydat: Extract and Tidy Canadian Hydrometric Data, The Journal of Open Source Software, 2, 511, https://doi.org/10.21105/joss.00511, 2017. a, b 4. Allaire, J.: manipulate: Interactive Plots for RStudio, available at https://CRAN.R-project.org/package=manipulate, r package version 1.0.1, 2014. a 5. Allaire, J., Horner, J., Xie, Y., Marti, V., and Porte, N.: markdown: “Markdown” Rendering for R, available at: https://CRAN.R-project.org/package=markdown, r package version 0.9, 2018a. a
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|