Using paired catchments to quantify the human influence on hydrological droughts

Author:

Van Loon Anne F.ORCID,Rangecroft Sally,Coxon GemmaORCID,Breña Naranjo José Agustín,Van Ogtrop Floris,Van Lanen Henny A. J.ORCID

Abstract

Abstract. Quantifying the influence of human activities, such as reservoir building, water abstraction, and land use change, on hydrology is crucial for sustainable future water management, especially during drought. Model-based methods are very time-consuming to set up and require a good understanding of human processes and time series of water abstraction, land use change, and water infrastructure and management, which often are not available. Therefore, observation-based methods are being developed that give an indication of the direction and magnitude of the human influence on hydrological drought based on limited data. We suggest adding to those methods a “paired-catchment” approach, based on the classic hydrology approach that was developed in the 1920s for assessing the impact of land cover treatment on water quantity and quality. When applying the paired-catchment approach to long-term pre-existing human influences trying to detect an influence on extreme events such as droughts, a good catchment selection is crucial. The disturbed catchment needs to be paired with a catchment that is similar in all aspects except for the human activity under study, in that way isolating the effect of that specific activity. In this paper, we present a framework for selecting suitable paired catchments for the study of the human influence on hydrological drought. Essential elements in this framework are the availability of qualitative information on the human activity under study (type, timing, and magnitude), and the similarity of climate, geology, and other human influences between the catchments. We show the application of the framework on two contrasting case studies, one impacted by groundwater abstraction and one with a water transfer from another region. Applying the paired-catchment approach showed how the groundwater abstraction aggravated streamflow drought by more than 200 % for some metrics (total drought duration and total drought deficit) and the water transfer alleviated droughts with 25 % to 80 %, dependent on the metric. Benefits of the paired-catchment approach are that climate variability between pre- and post-disturbance periods does not have to be considered as the same time periods are used for analysis, and that it avoids assumptions considered when partly or fully relying on simulation modelling. Limitations of the approach are that finding a suitable catchment pair can be very challenging, often no pre-disturbance records are available to establish the natural difference between the catchments, and long time series of hydrological data are needed to robustly detect the effect of the human activities on hydrological drought. We suggest that the approach can be used for a first estimate of the human influence on hydrological drought, to steer campaigns to collect more data, and to complement and improve other existing methods (e.g. model-based or large-sample approaches).

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference87 articles.

1. AEDA: The Ely Ouse Essex water transfer scheme, Agricultural & Environmental Data Achieve, available at: http://www.environmentdata.org/archive/ealit:4162 (last access: 24 March 2019), 1990.

2. Alila, Y., Kuraś, P. K., Schnorbus, M., and Hudson, R.: Forests and floods: A new paradigm sheds light on age-old controversies, Water Resour. Res., 45, W08416, https://doi.org/10.1029/2008WR007207, 2009.

3. Andréassian, V.: Waters and forests: from historical controversy to scientific debate, J. Hydrol., 291, 1–27, 2004.

4. Andréassian, V., Lerat, J., Le Moine, N., and Perrin, C. Neighbors: Nature's own hydrological models, J. Hydrol., 414, 49–58, 2012.

5. Bari, M. A., Smith, N., Ruprecht, J. K., and Boyd, B. W.: Changes in streamflow components following logging and regeneration in the Southern forest of Western Australia, Hydrol. Process., 10, 447–461, https://doi.org/10.1002/(SICI)1099-1085(199603)10:3<447::AID-HYP431>3.0.CO;2-1, 1996.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3