Statistical downscaling with the downscaleR package: Contribution to the VALUE intercomparison experiment

Author:

Bedia JoaquínORCID,Baño-Medina JorgeORCID,Legasa Mikel N.ORCID,Iturbide Maialen,Manzanas RodrigoORCID,Herrera Sixto,Casanueva AnaORCID,San-Martín Daniel,Cofiño Antonio S.,Gutiérrez Jose Manuel

Abstract

Abstract. The increasing demand for high-resolution climate information has attracted a growing attention for statistical downscaling methods (SD), due in part to their relative advantages and merits as compared to dynamical approaches (based on regional climate model simulations), such as their much lower computational cost and their fitness-for-purpose for many local-scale applications. As a result, a plethora of SD methods is nowadays available for climate scientists, which has motivated recent efforts for their comprehensive evaluation, like the VALUE Project (http://www.value-cost.eu). The systematic intercomparison of a large number of SD techniques undertaken in VALUE, many of them independently developed by different authors and modeling centers in a variety of languages/environments, has shown a compelling need for new tools allowing for their application within an integrated framework. With this regard, downscaleR is an R package for statistical downscaling of climate information which covers the most popular approaches (Model Output Statistics – including the so called 'bias correction' methods – and Perfect Prognosis) and state-of-the-art techniques. It has been conceived to work primarily with daily data and can be used in the framework of both seasonal forecasting and climate change studies. Its full integration within the climate4R framework (Iturbide et al. 2019) makes possible the development of end-to-end downscaling applications, from data retrieval to model building, validation and prediction, bringing to climate scientists and practitioners a unique comprehensive framework for SD model development. In this article the main features of downscaleR are showcased through the replication of some of the results obtained in the VALUE Project, making an emphasis in the most technically complex stages of perfect-prog model calibration (predictor screening, cross-validation and model selection) that are accomplished through simple commands allowing for extremely flexible model tuning, tailored to the needs of users requiring an easy interface for different levels of experimental complexity. As part of the open-source climate4R framework, downscaleR is freely available and the necessary data and R scripts to fully replicate the experiments included in this paper are also provided as a companion notebook.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3