Modeling of temperature scenarios in a multicore processor system

Author:

Glocker E.,Schmitt-Landsiedel D.

Abstract

Abstract. In modern CMOS integrated Systems-on-Chip global temperature variations arise as well as local fluctuations in regions of high activity, resulting in the arise of local hot spots. This in turn can greatly affect reliability and life-time of a chip. Economically affordable processor packaging cannot be provided for the worst case hot spot scenario. In a multicore system a reciprocal influence between the temperatures of neighbouring cores occur leading to increasing core temperature compared to a single core. This results in the need to monitor and regulate the operating temperature during runtime in order to keep it at tolerable values. This can be done in an easy way in an invasive architecture. In this paper the temperature distributions of cores in a multicore system are simulated for various scenarios. Different task allocation techniques and application characteristics as well as different physical conditions such as package types, material parameters and cooling all result in different system power scenarios. The impact of different scenarios which affect the system temperature scenario is investigated. The results are analysed and compared to determine the worst case scenario. With regard to simulation results and practicability the best temperature levelling measures are chosen.

Publisher

Copernicus GmbH

Reference11 articles.

1. Boehm, R. F.: Conduction Heat Transfer, in: The CRC Handbook of Thermal Engineering, edited by: Keith, F., CRC Press LLC, 2000.

2. Brooks, D. et al.: Power, Thermal, and Reliability Modeling in Nanometer-Scale Microprocessors, In IEEE Micro, Vol. 27, No. 3, 49–62, 2007.

3. Chandra, R.: Transient Temperature Analysis, Robuspic Workshop on European Solid-State Device Research Conference (ESSDERC), 2006.

4. Gunther, S. H. et al.: Managing the Impact of Increasing Microprocessor Power Consumption, In Intel Technology Journal first quarter 2001, 2001.

5. Huang, W., et. al.: Compact Thermal Modeling for Temperature-Aware Design, in: Proceedings Design Automation Conference, 878–883, 2004.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3