Comparison of global ocean colour data records
-
Published:2010-01-27
Issue:1
Volume:6
Page:61-76
-
ISSN:1812-0792
-
Container-title:Ocean Science
-
language:en
-
Short-container-title:Ocean Sci.
Author:
Djavidnia S.,Mélin F.,Hoepffner N.
Abstract
Abstract. The extending record of ocean colour derived information, an important asset for the study of marine ecosystems and biogeochemistry, presently relies on individual satellite missions launched by several space agencies with differences in sensor design, calibration strategies and algorithms. In this study we present an extensive comparative analysis of standard products obtained from operational global ocean colour sensors (SeaWiFS, MERIS, MODIS-Aqua, MODIS-Terra), on both global and regional scales. The analysis is based on monthly mean chlorophyll a (Chl-a) sea surface concentration between 2002 and 2009. Based on global statistics, the Chl-a records appear relatively consistent. The root mean square (RMS) difference Δ between (log-transformed) Chl-a from SeaWiFS and MODIS Aqua amounts to 0.137, with a bias of 0.074 (SeaWiFS Chl-a higher). The difference between these two products and MERIS Chl-a is approximately 0.15. Restricting the analysis to 2007 only, Δ between MODIS Aqua and Terra is 0.142. This global convergence is significantly modulated regionally. Statistics for biogeographic provinces representing a partition of the global ocean, show Δ values varying between 0.08 and 0.3. High latitude regions, as well as coastal and shelf provinces are generally the areas with the largest differences. Moreover, RMS differences and biases are modulated in time, with a coefficient of variation of Δ varying between 10% and 40%, with clear seasonal patterns in some provinces. The comparison of the province-averaged time series obtained from the various satellite products also shows a level of agreement that is geographically variable. Overall, the Chl-a SeaWiFS and MODIS Aqua series appear to have similar levels of variance and display high correlation coefficients, an agreement likely favoured by the common elements shared by the two missions. These results are degraded if the MERIS series is compared to either SeaWiFS or MODIS Aqua. An important outcome of the study is that the results of the inter-comparison analysis are variable with time and location, and therefore globally averaged statistics are not necessarily applicable on a seasonal or regional basis.
Funder
European Commission
Publisher
Copernicus GmbH
Subject
Cell Biology,Developmental Biology,Embryology,Anatomy
Reference75 articles.
1. Antoine, D. and Morel, A.: A multiple scattering algorithm for atmospheric correction of remotely sensed ocean colour (MERIS instrument): Principle and implementation for atmospheres carrying various aerosols including absorbing ones, Int. J. Remote Sens., 20, 1875–1916, 1999. 2. Bailey, S. W. and Werdell, P. J.: A multi-sensor approach for the on-orbit validation of ocean color satellite data products, Remote Sens. Environ., 102, 12–23, 2006. 3. Behrenfeld, M. J., Randerson, J. T., McClain, C. R., Feldman, G. C., Los, S. O., Tucker, C. J., Falkowski, P. G., Field, C. B., Frouin, R., Esaias, W. E., Kolber, D. D., and Pollack, N. H.: Biospheric primary production during an ENSO transition, Science, 291, 2594–2597, 2001. 4. Bélanger, S., Ehn, J. K., and Babin, M.: Impact of sea ice on the retrieval of water-leaving reflectance, chlorophyll a concentration and inherent optical properties from satellite ocean color data, Remote Sens. Environ., 111, 51–68, 2007. 5. Berthon, J.-F., Mélin, F., and Zibordi, G.: Ocean colour remote sensing of the optically complex European seas, in: Remote Sensing of the European Seas, edited by: Barale, V. and Gade, M., Springer, 35–52, 2008.
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|