Estimation of insurance related losses resulting from coastal flooding in France
Author:
Naulin J. P., Moncoulon D., Le Roy S., Pedreros R., Idier D.ORCID, Oliveros C.
Abstract
Abstract. A model has been developed in order to estimate insurance-related losses caused by coastal flooding in France. The deterministic part of the model aims at identifying the potentially flood-impacted sectors and the subsequent insured losses a few days after the occurrence of a storm surge event on any part of the French coast. This deterministic component is a combination of three models: a hazard model, a vulnerability model and a damage model. The first model uses the PREVIMER system to estimate the water level along the coast. A storage-cell flood model propagates these water levels over the land and thus determines the probable inundated areas. The vulnerability model, for its part, is derived from the insurance schedules and claims database; combining information such as risk type, class of business and insured values. The outcome of the vulnerability and hazard models are then combined with the damage model to estimate the event damage and potential insured losses. This system shows satisfactory results in the estimation of the magnitude of the known losses related to the flood caused by the Xynthia storm. However, it also appears very sensitive to the water height estimated during the flood period, conditioned by the junction between sea water levels and coastal topography for which the accuracy is still limited in the system.
Publisher
Copernicus GmbH
Reference48 articles.
1. André, C., Monfort, D., Bouzit, M., and Vinchon, C.: Contribution of insurance data to cost assessment of coastal flood damage to residential buildings: insights gained from Johanna (2008) and Xynthia (2010) storm events, Nat. Hazards Earth Syst. Sci., 13, 2003–2012, https://doi.org/10.5194/nhess-13-2003-2013, 2013. 2. Ardhuin, F., Rogers, A., Babanin, A., Filipot, J. F., Magne, R., Roland, R., Westhuysen, A. V. D., Queffleulou, P., Lefevre, L., Aouf, L., and Collard, F.: Semi-empirical dissipation source functions for ocean waves: 5 Part I, definition, calibration and validation, J. Phys. Oceanogr., 40, 1917–1941, 2010. 3. Bates, P. D., Dawson, R. J., Hall, J. W., Horritt, M. S., Nicholls, R. J., Wicks, J., and Hassan, M. A. A. M.: Simplified two-dimensional numerical modelling of coastal flooding and example applications, Coast. Eng., 52, 793–810, 2005. 4. Bates, P. D., Horritt, M. S., and Fewtrell, T. J.: A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling, J. Hydrol., 387, 33–45, 2010. 5. Bertin, X., Li, K., Roland, A., Breilh, J.-F., and Chaumillon, E.: Contributions des vagues dans la surcote associée à la tempête Xynthia, février 2010, Editions Paralia, 12–14 June 2012, Editions Paralia, 909–916, https://doi.org/10.5150/jngcgc.2012.099-B, 2012.
|
|