A spatial Bayesian network model to assess the benefits of early warning for urban flood risk to people

Author:

Balbi S.,Villa F.,Mojtahed V.,Hegetschweiler K. T.,Giupponi C.ORCID

Abstract

Abstract. This article presents a novel methodology to assess flood risk to people by integrating people's vulnerability and ability to cushion hazards through coping and adapting. The proposed approach extends traditional risk assessments beyond material damages; complements quantitative and semi-quantitative data with subjective and local knowledge, improving the use of commonly available information; produces estimates of model uncertainty by providing probability distributions for all of its outputs. Flood risk to people is modeled using a spatially explicit Bayesian network model calibrated on expert opinion. Risk is assessed in terms of: (1) likelihood of non-fatal physical injury; (2) likelihood of post-traumatic stress disorder; (3) likelihood of death. The study area covers the lower part of the Sihl valley (Switzerland) including the city of Zurich. The model is used to estimate the benefits of improving an existing Early Warning System, taking into account the reliability, lead-time and scope (i.e. coverage of people reached by the warning). Model results indicate that the potential benefits of an improved early warning in terms of avoided human impacts are particularly relevant in case of a major flood event: about 75 % of fatalities, 25 % of injuries and 18 % of post-traumatic stress disorders could be avoided.

Publisher

Copernicus GmbH

Reference60 articles.

1. Addor, N., Jaun, S., Fundel, F., and Zappa, M.: An operational hydrological ensemble prediction system for the city of Zurich (Switzerland): skill, case studies and scenarios, Hydrol. Earth Syst. Sci., 15, 2327–2347, https://doi.org/10.5194/hess-15-2327-2011, 2011.

2. Adger, W. N. and Vincent, K.: Uncertainty in adaptive capacity, CR Geosci., 337, 399–410, 2005.

3. Amendola, A., Ermoliev, Y., Ermolieva, T. Y., Gitis, V., Koff, G., and Linnerooth-Bayer, J.: A systems approach to modeling catastrophic risk and insurability, Nat. Hazards, 21, 381–393, 2000.

4. Antonucci, A., Salvetti, A., and Zaffalon, M.: Hazard assessment of debris flows by credal networks, in: iEMSs 2004 International Congress: "Complexity and Integrated Resources Management", edited by: Pahl-Wostl, C., Schmidt, S., and Jakeman, T., International Environmental Modelling and Software Societey, Osnabrueck, Germany, 14–17 June, 2004.

5. AWEL: Amt für Abfall, Wasser, Energie und Luft: Hochwasserschutz an Sihl, Zürichsee und Limmat: Integrales Risikomanagement und Massnahmenziel-Konzept, available at: http://www.hochwasserschutz-zuerich.zh.ch (last access: October 2015), 2013.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3