Measurement report: Underestimated reactive organic gases from residential combustion – insights from a near-complete speciation

Author:

Gao Yaqin,Wang Hongli,Yuan Lingling,Jing Shengao,Yuan BinORCID,Shen GuofengORCID,Zhu Liang,Koss Abigail,Li Yingjie,Wang Qian,Huang Dan Dan,Zhu Shuhui,Tao Shikang,Lou ShengrongORCID,Huang ChengORCID

Abstract

Abstract. Reactive organic gases (ROGs), as important precursors of secondary pollutants, are not well resolved as their chemical complexity has challenged their quantification in many studies. Here, a near-complete speciation of ROG emissions from residential combustion was developed by the combination of proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) with a gas chromatography system equipped with a mass spectrometer and a flame ionization detector (GC-MS/FID), including 1049 species in all. Among them, 125 identified species, ∼ 90 % of the total ROG masses, were applied to evaluate their emission characteristics through real combustion samplings in rural households of China. The study revealed that with 55 species, mainly oxygenated species, higher hydrocarbons with ≥8 carbon atoms, and nitrogen-containing species, previously un- and under-characterized, ROG emissions from residential coal and biomass combustion were underestimated by 44.3 % ± 11.8 % and 22.7 % ± 3.9 %, respectively, which further amplified the underestimation of secondary organic aerosol formation potential (SOAP) as high as 70.3 % ± 1.6 % and 89.2 % ± 1.0 %, respectively. The hydroxyl radical reactivity (OHR) of ROG emissions was also undervalued significantly. The study provided a feasible method for the near-complete speciation of ROGs in the atmosphere and highlighted the importance of acquiring completely speciated measurement of ROGs from residential emissions, as well as other processes.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Key Technologies Research and Development Program

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference68 articles.

1. Akherati, A., He, Y., Coggon, M. M., Koss, A. R., Hodshire, A. L., Sekimoto, K., Warneke, C., de Gouw, J., Yee, L., Seinfeld, J. H., Onasch, T. B., Herndon, S. C., Knighton, W. B., Cappa, C. D., Kleeman, M. J., Lim, C. Y., Kroll, J. H., Pierce, J. R., and Jathar, S. H.: Oxygenated aromatic compounds are important precursors of secondary organic aerosol in biomass-burning emissions, Environ. Sci. Technol., 54, 8568–8579, https://doi.org/10.1021/acs.est.0c01345, 2020.

2. Arnold, S. T., Viggiano, A. A., and Morris, R. A.: Rate constants and product branching fractions for the reactions of H3O+ and NO+ with C2–C12 alkanes, J. Phys. Chem. A, 102, 8881–8887, https://doi.org/10.1021/jp9815457, 1998.

3. Batterman, S. A., Zhang, G.-Z., and Baumann, M.: Analysis and stability of aldehydes and terpenes in electropolished canisters, Atmos. Environ., 32, 1647–1655, https://doi.org/10.1016/S1352-2310(97)00417-2, 1998.

4. Bruns, E. A., El Haddad, I., Slowik, J. G., Kilic, D., Klein, F., Baltensperger, U., and Prevot, A. S. H.: Identification of significant precursor gases of secondary organic aerosols from residential wood combustion, Sci. Rep.-UK, 6, 27881, https://doi.org/10.1038/srep27881, 2016.

5. Bruns, E. A., Slowik, J. G., El Haddad, I., Kilic, D., Klein, F., Dommen, J., Temime-Roussel, B., Marchand, N., Baltensperger, U., and Prévôt, A. S. H.: Characterization of gas-phase organics using proton transfer reaction time-of-flight mass spectrometry: fresh and aged residential wood combustion emissions, Atmos. Chem. Phys., 17, 705–720, https://doi.org/10.5194/acp-17-705-2017, 2017.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3