An intercomparison study of four different techniques for measuring the chemical composition of nanoparticles
-
Published:2023-06-15
Issue:11
Volume:23
Page:6613-6631
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Caudillo Lucía, Surdu Mihnea, Lopez Brandon, Wang Mingyi, Thoma MarkusORCID, Bräkling Steffen, Buchholz AngelaORCID, Simon MarioORCID, Wagner Andrea C., Müller Tatjana, Granzin Manuel, Heinritzi Martin, Amorim Antonio, Bell David M., Brasseur ZoéORCID, Dada LubnaORCID, Duplissy JonathanORCID, Finkenzeller HenningORCID, He Xu-ChengORCID, Lamkaddam Houssni, Mahfouz Naser G. A.ORCID, Makhmutov Vladimir, Manninen Hanna E., Marie Guillaume, Marten RubyORCID, Mauldin Roy L., Mentler BernhardORCID, Onnela Antti, Petäjä TuukkaORCID, Pfeifer JoschkaORCID, Philippov MaximORCID, Piedehierro Ana A.ORCID, Rörup Birte, Scholz WiebkeORCID, Shen Jiali, Stolzenburg DominikORCID, Tauber Christian, Tian Ping, Tomé António, Umo Nsikanabasi Silas, Wang Dongyu S.ORCID, Wang YonghongORCID, Weber Stefan K.ORCID, Welti AndréORCID, Zauner-Wieczorek MarcelORCID, Baltensperger UrsORCID, Flagan Richard C.ORCID, Hansel ArminORCID, Kirkby JasperORCID, Kulmala MarkkuORCID, Lehtipalo KatrianneORCID, Worsnop Douglas R., Haddad Imad El, Donahue Neil M.ORCID, Vogel Alexander L.ORCID, Kürten Andreas, Curtius JoachimORCID
Abstract
Abstract. Currently, the complete chemical characterization of nanoparticles
(< 100 nm) represents an analytical challenge, since these particles
are abundant in number but have negligible mass. Several methods for
particle-phase characterization have been recently developed to better
detect and infer more accurately the sources and fates of sub-100 nm
particles, but a detailed comparison of different approaches is missing.
Here we report on the chemical composition of secondary organic aerosol
(SOA) nanoparticles from experimental studies of α-pinene ozonolysis
at −50, −30, and −10 ∘C and intercompare the results measured by different
techniques. The experiments were performed at the Cosmics Leaving OUtdoor
Droplets (CLOUD) chamber at the European Organization for Nuclear Research
(CERN). The chemical composition was measured simultaneously by four
different techniques: (1) thermal desorption–differential mobility analyzer
(TD–DMA) coupled to a NO3- chemical ionization–atmospheric-pressure-interface–time-of-flight (CI–APi–TOF) mass
spectrometer, (2) filter inlet for gases and aerosols (FIGAERO) coupled to an
I− high-resolution time-of-flight chemical ionization mass spectrometer
(HRToF-CIMS), (3) extractive electrospray Na+ ionization
time-of-flight mass spectrometer (EESI-TOF), and (4) offline analysis of
filters (FILTER) using ultra-high-performance liquid chromatography (UHPLC)
and heated electrospray ionization (HESI) coupled to an Orbitrap
high-resolution mass spectrometer (HRMS). Intercomparison was performed by
contrasting the observed chemical composition as a function of oxidation
state and carbon number, by estimating the volatility and comparing the
fraction of volatility classes, and by comparing the thermal desorption
behavior (for the thermal desorption techniques: TD–DMA and FIGAERO) and
performing positive matrix factorization (PMF) analysis for the thermograms.
We found that the methods generally agree on the most important compounds
that are found in the nanoparticles. However, they do see different parts of
the organic spectrum. We suggest potential explanations for these
differences: thermal decomposition, aging, sampling artifacts, etc. We
applied PMF analysis and found insights of thermal decomposition in the
TD–DMA and the FIGAERO.
Funder
Horizon 2020 Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie Deutsche Forschungsgemeinschaft National Science Foundation Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung CERN Academy of Finland HORIZON EUROPE European Research Council Prince Albert II of Monaco Foundation
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference55 articles.
1. Bell, D. M., Wu, C., Bertrand, A., Graham, E., Schoonbaert, J., Giannoukos, S., Baltensperger, U., Prevot, A. S. H., Riipinen, I., El Haddad, I., and Mohr, C.: Particle-phase processing of α-pinene NO3 secondary organic aerosol in the dark, Atmos. Chem. Phys., 22, 13167–13182, https://doi.org/10.5194/acp-22-13167-2022, 2022. 2. Breitenlechner, M., Fischer, L., Hainer, M., Heinritzi, M., Curtius, J., and
Hansel, A.: PTR3: An Instrument for Studying the Lifecycle of Reactive
Organic Carbon in the Atmosphere, Anal. Chem., 89, 5824–5831,
https://doi.org/10.1021/acs.analchem.6b05110, 2017. 3. Buchholz, A., Ylisirniö, A., Huang, W., Mohr, C., Canagaratna, M.,
Worsnop, D. R., Schobesberger, S., and Virtanen, A.: Deconvolution of
FIGAERO–CIMS thermal desorption profiles using positive matrix
factorisation to identify chemical and physical processes during particle
evaporation, Atmos. Chem. Phys., 20, 7693–7716, https://doi.org/10.5194/acp-20-7693-2020,
2020. 4. Bzdek, B. R., Pennington, M. R., and Johnston, M. V.: Single particle
chemical analysis of ambient ultrafine aerosol: A review, J. Aerosol
Sci., 52, 109–120, https://doi.org/10.1016/j.jaerosci.2012.05.001, 2012. 5. Caudillo, L., Rörup, B., Heinritzi, M., Marie, G., Simon, M., Wagner, A.
C., Müller, T., Granzin, M., Amorim, A., Ataei, F., Baalbaki, R.,
Bertozzi, B., Brasseur, Z., Chiu, R., Chu, B., Dada, L., Duplissy, J.,
Finkenzeller, H., Gonzalez Carracedo, L., He, X. C., Hofbauer, V., Kong, W.,
Lamkaddam, H., Lee, C. P., Lopez, B., Mahfouz, N. G. A., Makhmutov, V.,
Manninen, H. E., Marten, R., Massabò, D., Mauldin, R. L., Mentler, B.,
Molteni, U., Onnela, A., Pfeifer, J., Philippov, M., Piedehierro, A. A.,
Schervish, M., Scholz, W., Schulze, B., Shen, J., Stolzenburg, D., Stozhkov,
Y., Surdu, M., Tauber, C., Tham, Y. J., Tian, P., Tomé, A., Vogt, S.,
Wang, M., Wang, D. S., Weber, S. K., Welti, A., Yonghong, W., Yusheng, W.,
Zauner-Wieczorek, M., Baltensperger, U., El Haddad, I., Flagan, R. C.,
Hansel, A., Höhler, K., Kirkby, J., Kulmala, M., Lehtipalo, K.,
Möhler, O., Saathoff, H., Volkamer, R., Winkler, P. M., Donahue, N. M.,
Kürten, A., and Curtius, J.: Chemical composition of nanoparticles from
α-pinene nucleation and the influence of isoprene and relative humidity
at low temperature, Atmos. Chem. Phys., 21, 17099–17114,
https://doi.org/10.5194/acp-21-17099-2021, 2021.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|