Identification of smoke and sulfuric acid aerosol in SAGE III/ISS extinction spectra

Author:

Knepp Travis N.ORCID,Thomason LarryORCID,Kovilakam MaheshORCID,Tackett Jason,Kar JayantaORCID,Damadeo RobertORCID,Flittner David

Abstract

Abstract. We developed a technique to classify the composition of enhanced aerosol layers as either smoke or sulfuric acid aerosol using extinction spectra from the Stratospheric Aerosol and Gas Experiment III instrument aboard the International Space Station (SAGE III/ISS). This method takes advantage of the different spectral properties of smoke and sulfuric acid aerosol, which is manifest in distinctly different spectral slopes in the SAGE III/ISS data. Herein we demonstrate the utility of this method and present an evaluation of its performance using four case-study events of two moderate volcanic eruptions (2018 Ambae eruption and 2019 Ulawun eruption, both of which released <0.5 Tg of SO2) and two large wildfire events (2017 Canadian pyroCb and 2020 Australian pyroCb). We provide corroborative data from the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument to support these classifications. This method correctly classified smoke and sulfuric acid plumes in the case-study events >81 % and >99.5 % of the time, respectively. The application of this method to a large volcanic event (i.e., the 2019 Raikoke eruption; ≥1.5 Tg SO2) serves as an example of why this method is limited to small and moderate volcanic events as it incorrectly classified Raikoke's larger sulfuric acid particles as smoke. We evaluated the possibility of smoke being present in the stratosphere before and after the Raikoke eruption. While smoke was present during this time period it was insufficient to account for the magnitude of smoke classifications we observed. Therefore, while this method worked well for large-scale wildfire events and eruptions that inject less SO2, the size of the aerosol created by the Raikoke eruption was outside the applicable range of this method.

Funder

Science Mission Directorate

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3