Effects of clouds and aerosols on downwelling surface solar irradiance nowcasting and short-term forecasting

Author:

Papachristopoulou KyriakoulaORCID,Fountoulakis IliasORCID,Bais Alkiviadis F.ORCID,Psiloglou Basil E.,Papadimitriou NikolaosORCID,Raptis Ioannis-PanagiotisORCID,Kazantzidis Andreas,Kontoes Charalampos,Hatzaki Maria,Kazadzis SteliosORCID

Abstract

Abstract. Solar irradiance nowcasting and short-term forecasting are important tools for the integration of solar plants into the electricity grid. Understanding the role of clouds and aerosols in those techniques is essential for improving their accuracy. In this study, we introduce improvements in the existing nowcasting and short-term forecasting operational systems SENSE (Solar Energy Nowcasting System) and NextSENSE achieved by using a new configuration and by upgrading cloud and aerosol inputs, and we also investigate the limitations of evaluating such models using surface-based sensors due to cloud effects. We assess the real-time estimates of surface global horizontal irradiance (GHI) produced by the improved SENSE2 operational system at high spatial and temporal resolution (∼ 5 km, 15 min) for a domain including Europe and the Middle East–North Africa (MENA) region and the short-term forecasts of GHI (up to 3 h ahead) produced by the NextSENSE2 system against ground-based measurements from 10 stations across the models' domain for a whole year (2017). Results for instantaneous (every 15 min) comparisons show that the GHI estimates are within ±50 W m−2 (or ±10 %) of the measured GHI for 61 % of the cases after the implementation of the new model configuration and a proposed bias correction. The bias ranges from −12 to 23 W m−2 (or from −2 % to 6.1 %) with a mean value of 11.3 W m−2 (2.3 %). The correlation coefficient is between 0.83 and 0.96 and has a mean value of 0.93. Statistics are significantly improved when integrating on daily and monthly scales (the mean bias is 3.3 and 2.7 W m−2, respectively). We demonstrate that the main overestimation of the SENSE2 GHI is linked with the uncertainties of the cloud-related information within the satellite pixel, while relatively low underestimation, linked with aerosol optical depth (AOD) forecasts (derived from the Copernicus Atmospheric Monitoring Service – CAMS), is reported for cloudless-sky GHI. The highest deviations for instantaneous comparisons are associated with cloudy atmospheric conditions, when clouds obscure the sun over the ground-based station. Thus, they are much more closely linked with satellite vs. ground-based comparison limitations than the actual model performance. The NextSENSE2 GHI forecasts based on the cloud motion vector (CMV) model outperform the persistence forecasting method, which assumes the same cloud conditions for future time steps. The forecasting skill (FS) of the CMV-based model compared to the persistence approach increases with cloudiness (FS is up to ∼ 20 %), which is linked mostly to periods with changes in cloudiness (which persistence, by definition, fails to predict). Our results could be useful for further studies on satellite-based solar model evaluations and, in general, for the operational implementation of solar energy nowcasting and short-term forecasting, supporting solar energy production and management.

Publisher

Copernicus GmbH

Reference77 articles.

1. Anderson, G. P., Clough, S. A., Kneizys, F. X., Chetwynd, J. H., and Shettle, E. P.: AFGL atmospheric constituent profiles (0.120 km), Air Force Geophysics Lab Hanscom AFB MA, 1986

2. Arvizu, D., Balaya, P., Cabeza, L., Hollands, T., Jäger-Waldau, A., Kondo, M., Konseibo, C., Meleshko, V., Stein, W., Tamaura, Y., Xu, H., and Zilles, R.: Direct Solar Energy. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation, edited by: Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G.,Schlömer, S., and von Stechow, C., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2011.

3. Bais, A. F., Drosoglou, T., Meleti, C., Tourpali, K., and Kouremeti, N.: Changes in surface shortwave solar irradiance from 1993 to 2011 at Thessaloniki (Greece), Int. J. Climatol., 33, 2871–2876, https://doi.org/10.1002/joc.3636, 2013.

4. Basart, S., Langerock, B., Arola, A., Benedictow, A., Bennouna, Y., Bouarar, I., Cuevas, E., Errera, Q., Eskes, H. J., Griesfeller, J., Kapsomenakis, J., Mortier, A., Pison, I., Pitkänen, M., Ramonet, M., Richter, A., Schoenhardt, A., Schulz, M., Tarniewicz, J., Thouret, V., Tsikerdekis, A., Warneke, T., and Zerefos, C.: Validation report of the CAMS near-real-time global atmospheric composition service: June–August 2022, Copernicus Atmosphere Monitoring Service (CAMS) report, https://doi.org/10.24380/tstx-k064, 2023.

5. Bhartia, P. K.: OMI/Aura TOMS-Like Ozone, Aerosol Index, Cloud Radiance Fraction L3 1 day 1 degree x 1 degree V3, NASA Goddard Space Flight Center, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/Aura/OMI/DATA3001, 2012.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3