Verification of parameterizations for clear sky downwelling longwave irradiance in the Arctic

Author:

Pace GiandomenicoORCID,di Sarra Alcide,Cali Quaglia FilippoORCID,Ciardini Virginia,Di Iorio Tatiana,Iaccarino Antonio,Meloni DanielaORCID,Muscari GiovanniORCID,Scarchilli ClaudioORCID

Abstract

Abstract. Ground-based high resolution observations of downward longwave irradiance (DLI), surface air temperature, water vapor surface partial pressure and column amount, zenith sky infrared (IR) radiance in the atmospheric window, and all-sky camera images are regularly obtained at the Thule High Arctic Atmospheric Observatory (THAAO, 76.5° N, 68.8° W), northwestern Greenland. The datasets for the years 2017 and 2018 have been used to assess the performance of different empirical formulas used to infer clear sky DLI. An algorithm to identify clear sky observations has been developed, based on value, variability, and persistence of zenith sky IR radiance. Seventeen different formulas to estimate DLI have been tested against the THAAO dataset, using the originally determined coefficients. The formulas that combine information on total column water vapor and surface air temperature appear to perform better than others, with a mean bias with respect to the measured DLI smaller than 1 W m−2 and a root mean squared error (RMSE) around 6 W m−2. Unexpectedly, some formulas specifically developed for the Arctic are found to produce poor statistical results. This is attributed partly to limitations in the originally used dataset, which does not cover a whole year or is relative to very specific condition (i.e., the presence of an ice sheet). As expected, the bias displays a significant improvement when the coefficients of the different formulas are calculated using the THAAO dataset. The presence of 2 full years of data allows the determination and the applicability of the coefficients for singular years and the evaluation of results. The smallest values of the bias and RMSE reach 0.1 and 5 W m−2, respectively. Overall, the best results are found for formulas that use both surface parameters and total water vapor column content, and have been developed from global datasets. Conversely, formulas that express the atmospheric emissivity as a linear function of the logarithm of the column integrated water vapor appear to reproduce poorly the observations at THAAO.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3