Vegetation composition and soil microbial community structural changes along a wetland hydrological gradient

Author:

Balasooriya W. K.,Denef K.,Peters J.,Verhoest N. E. C.,Boeckx P.

Abstract

Abstract. Fluctuations in wetland hydrology create an interplay between aerobic and anaerobic conditions, controlling vegetation composition and microbial community structure and activity in wetland soils. In this study, we investigated the vegetation composition and microbial community structural and functional changes along a wetland hydrological gradient. Two different vegetation communities were distinguished along the hydrological gradient; Caricetum gracilis at the wet depression and Arrhenatheretum elatioris at the drier upper site. Microbial community structural changes were studied by a combined in situ 13CO2 pulse labeling and phospholipid fatty acid (PLFA) based stable isotope probing approach, which identifies the microbial groups actively involved in assimilation of newly photosynthesized, root-derived C in the rhizosphere soils. Gram negative bacterial communities were relatively more abundant in the surface soils of the drier upper site than in the surface soils of the wetter lower site, while the lower site and the deeper soil layers were relatively more inhabited by gram positive bacterial communities. Despite their large abundance, the metabolically active proportion of gram positive bacterial and actinomycetes communities was much smaller at both sites, compared to that of the gram negative bacterial and fungal communities. This suggests much slower assimilation of root-derived C by gram positive and actinomycetes communities than by gram negative bacteria and fungi at both sites. Ground water depth showed a significant effect on the relative abundance of several microbial communities. Relative abundance of gram negative bacteria significantly decreased with increasing ground water depth while the relative abundance of gram positive bacteria and actinomycetes at the surface layer increased with increasing ground water depth.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3