Synchronicity in predictive modelling: a new view of data assimilation

Author:

Duane G. S.,Tribbia J. J.,Weiss J. B.

Abstract

Abstract. The problem of data assimilation can be viewed as one of synchronizing two dynamical systems, one representing "truth" and the other representing "model", with a unidirectional flow of information between the two. Synchronization of truth and model defines a general view of data assimilation, as machine perception, that is reminiscent of the Jung-Pauli notion of synchronicity between matter and mind. The dynamical systems paradigm of the synchronization of a pair of loosely coupled chaotic systems is expected to be useful because quasi-2D geophysical fluid models have been shown to synchronize when only medium-scale modes are coupled. The synchronization approach is equivalent to standard approaches based on least-squares optimization, including Kalman filtering, except in highly non-linear regions of state space where observational noise links regimes with qualitatively different dynamics. The synchronization approach is used to calculate covariance inflation factors from parameters describing the bimodality of a one-dimensional system. The factors agree in overall magnitude with those used in operational practice on an ad hoc basis. The calculation is robust against the introduction of stochastic model error arising from unresolved scales.

Publisher

Copernicus GmbH

Subject

General Medicine

Reference30 articles.

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mitigating Model Error via a Multimodel Method and Application to Tropical Intraseasonal Oscillations;SIAM Journal on Applied Dynamical Systems;2023-11-03

2. Supermodeling: Improving Predictions with an Ensemble of Interacting Models;Bulletin of the American Meteorological Society;2023-09

3. Synchronization of Alternative Models in a Supermodel and the Learning of Critical Behavior;Journal of the Atmospheric Sciences;2023-06

4. Asymptotic behavior of the forecast–assimilation process with unstable dynamics;Chaos: An Interdisciplinary Journal of Nonlinear Science;2023-02-01

5. An efficient continuous data assimilation algorithm for the Sabra shell model of turbulence;Chaos: An Interdisciplinary Journal of Nonlinear Science;2021-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3