Land-use and land-cover change carbon emissions between 1901 and 2012 constrained by biomass observations
-
Published:2017-11-14
Issue:22
Volume:14
Page:5053-5067
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Li WeiORCID, Ciais Philippe, Peng ShushiORCID, Yue Chao, Wang YilongORCID, Thurner MartinORCID, Saatchi Sassan S., Arneth Almut, Avitabile Valerio, Carvalhais NunoORCID, Harper Anna B.ORCID, Kato EtsushiORCID, Koven CharlesORCID, Liu Yi Y., Nabel Julia E.M.S.ORCID, Pan Yude, Pongratz JuliaORCID, Poulter BenjaminORCID, Pugh Thomas A. M., Santoro MaurizioORCID, Sitch Stephen, Stocker Benjamin D., Viovy NicolasORCID, Wiltshire Andy, Yousefpour Rasoul, Zaehle SönkeORCID
Abstract
Abstract. The use of dynamic global vegetation models (DGVMs) to estimate CO2 emissions from land-use and land-cover change (LULCC) offers a new window to account for spatial and temporal details of emissions and for ecosystem processes affected by LULCC. One drawback of LULCC emissions from DGVMs, however, is lack of observation constraint. Here, we propose a new method of using satellite- and inventory-based biomass observations to constrain historical cumulative LULCC emissions (ELUCc) from an ensemble of nine DGVMs based on emerging relationships between simulated vegetation biomass and ELUCc. This method is applicable on the global and regional scale. The original DGVM estimates of ELUCc range from 94 to 273 PgC during 1901–2012. After constraining by current biomass observations, we derive a best estimate of 155 ± 50 PgC (1σ Gaussian error). The constrained LULCC emissions are higher than prior DGVM values in tropical regions but significantly lower in North America. Our emergent constraint approach independently verifies the median model estimate by biomass observations, giving support to the use of this estimate in carbon budget assessments. The uncertainty in the constrained ELUCc is still relatively large because of the uncertainty in the biomass observations, and thus reduced uncertainty in addition to increased accuracy in biomass observations in the future will help improve the constraint. This constraint method can also be applied to evaluate the impact of land-based mitigation activities.
Funder
European Commission European Research Council
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference41 articles.
1. Avitabile, V., Herold, M., Heuvelink, G. B. M., Lewis, S. L., Phillips, O. L., Asner, G. P., Armston, J., Ashton, P. S., Banin, L. F., Bayol, N., Berry, N. J., Boeckx, P., de Jong, B. H. J., DeVries, B., Girardin, C. A. J., Kearsley, E., Lindsell, J. A., Lopez-Gonzalez, G., Lucas, R., Malhi, Y., Morel, A., Mitchard, E. T. A., Nagy, L., Qie, L., Quinones, M. J., Ryan, C. M., Ferry, S. J. W., Sunderland, T., Laurin, G. V., Gatti, R. C., Valentini, R., Verbeeck, H., Wijaya, A., Willcock, S., Asthon, P., Banin, L. F., Bayol, N., Berry, N. J., Boeckx, P., de Jong, B. H. J., DeVries, B., Girardin, C. A. J., Kearsley, E., Lindsell, J. A., Lopez-Gonzalez, G., Lucas, R., Malhi, Y., Morel, A., Mitchard, E. T. A., Nagy, L., Qie, L., Quinones, M. J., Ryan, C. M., Slik, F., Sunderland, T., Vaglio Laurin, G., Valentini, R., Verbeeck, H., Wijaya, A., and Willcock, S.: An integrated pan-tropical biomass map using multiple reference datasets, Glob. Change Biol., 22, 1406–1420, https://doi.org/10.1111/gcb.13139, 2016. 2. Baccini, A., Goetz, S. J., Walker, W. S., Laporte, N. T., Sun, M., Sulla-Menashe, D., Hackler, J., Beck, P. S. A., Dubayah, R., Friedl, M. A., Samanta, S., and Houghton, R. A.: Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps, Nature Climate Change, 2, 182–185, https://doi.org/10.1038/nclimate1354, 2012. 3. Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. . L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011. 4. Boden, T. A., Marland, G., and Andres, R. J.: Global, regional, and national fossil-fuel CO2 emissions, Carbon Dioxide Inf. Anal. Center, Oak Ridge Natl. Lab. USA, Oak Ridge, TN Dep. Energy, https://doi.org/10.3334/CDIAC/00001, 2013. 5. Carvalhais, N., Forkel, M., Khomik, M., Bellarby, J., Jung, M., Migliavacca, M., Mu, M., Saatchi, S., Santoro, M., Thurner, M., Weber, U., Ahrens, B., Beer, C., Cescatti, A., Randerson, J. T., and Reichstein, M.: Global covariation of carbon turnover times with climate in terrestrial ecosystems, Nature, 514, 213–217, https://doi.org/10.1038/nature13731, 2014.
Cited by
64 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|