Artificial neural networks and multiple linear regression model using principal components to estimate rainfall over South America

Author:

Soares dos Santos T.,Mendes D.,Rodrigues Torres R.

Abstract

Abstract. Several studies have been devoted to dynamic and statistical downscaling for analysis of both climate variability and climate change. This paper introduces an application of artificial neural networks (ANNs) and multiple linear regression (MLR) by principal components to estimate rainfall in South America. This method is proposed for downscaling monthly precipitation time series over South America for three regions: the Amazon; northeastern Brazil; and the La Plata Basin, which is one of the regions of the planet that will be most affected by the climate change projected for the end of the 21st century. The downscaling models were developed and validated using CMIP5 model output and observed monthly precipitation. We used general circulation model (GCM) experiments for the 20th century (RCP historical; 1970–1999) and two scenarios (RCP 2.6 and 8.5; 2070–2100). The model test results indicate that the ANNs significantly outperform the MLR downscaling of monthly precipitation variability.

Publisher

Copernicus GmbH

Subject

General Medicine

Reference19 articles.

1. Alsmadi, M. K. S., Omar, K. B., and Noah, S. A: Back propagation algorithm: the best algorithm among the multi-layer perceptron algorithm, Int. J. Comput. Sci. Netw. Sec., 9, 378–383, 2009.

2. Antolik, M. S.: An overview of the National Weather Service's centralized statistical quantitative precipitation forecasts, J. Hydrol., 239, 306–337, https://doi.org/10.1016/S0022-1694(00)00361-9, 2000.

3. da Silva, A. G. and Silva, C. M. S.: Improving Regional Dynamic Downscaling with Multiple Linear Regression Model Using Components Principal Analysis: Precipitation over Amazon and Northeast Brazil, Adv. Meteorol., 2014, 928729, https://doi.org/10.1155/2014/928729, 2014.

4. Haykin, S. S.: Redes neurais, Bookman, Porto Alegre, 2001.

5. Leahy, K.: Multicollinearity: When the solution is the problem, in: Data mining cookbook: Modelling data for marketing, risk and costumer relationship management, edited by: Rud, O. P., John Wiley & Sons, New York, 106–108, 2001.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3