Shyft v4.8: a framework for uncertainty assessment and distributed hydrologic modeling for operational hydrology

Author:

Burkhart John F.ORCID,Matt Felix N.,Helset Sigbjørn,Sultan Abdella Yisak,Skavhaug Ola,Silantyeva OlgaORCID

Abstract

Abstract. This paper presents Shyft, a novel hydrologic modeling software for streamflow forecasting targeted for use in hydropower production environments and research. The software enables rapid development and implementation in operational settings and the capability to perform distributed hydrologic modeling with multiple model and forcing configurations. Multiple models may be built up through the creation of hydrologic algorithms from a library of well-known routines or through the creation of new routines, each defined for processes such as evapotranspiration, snow accumulation and melt, and soil water response. Key to the design of Shyft is an application programming interface (API) that provides access to all components of the framework (including the individual hydrologic routines) via Python, while maintaining high computational performance as the algorithms are implemented in modern C++. The API allows for rapid exploration of different model configurations and selection of an optimal forecast model. Several different methods may be aggregated and composed, allowing direct intercomparison of models and algorithms. In order to provide enterprise-level software, strong focus is given to computational efficiency, code quality, documentation, and test coverage. Shyft is released open-source under the GNU Lesser General Public License v3.0 and available at https://gitlab.com/shyft-os (last access: 22 November 2020), facilitating effective cooperation between core developers, industry, and research institutions.

Funder

Universitetet i Oslo

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3