Association analysis of melanophilin (MLPH) gene expression and polymorphism with plumage color in quail

Author:

Yuan Zhiwen,Zhang Xiaohui,Pang Youzhi,Qi Yanxia,Wang Qiankun,Hu Yunqi,Zhao Yiwei,Ren Shiwei,Huo Linke

Abstract

Abstract. We explore the relationship between the melanophilin (MLPH) gene and quail plumage color and provide a reference for subsequent quail plumage color breeding. In this experiment, real-time quantitative PCR (RT-qPCR) technology was used to analyze the relative mRNA expression levels of Korean quail (maroon) and Beijing white quail embryos at different developmental stages. Two single-nucleotide polymorphisms (SNPs) in the MLPH gene were screened based on the RNA-sequencing (RNA-Seq) data of skin tissues of Korean quail and Beijing white quail during the embryonic stage. Kompetitive allele-specific PCR (KASP) technology was used for genotyping in the resource population, and correlation analysis was carried out with the plumage color traits of quail. Finally, bioinformatics was used to predict the effects of these two SNPs on the structure and function of the encoded protein. The results showed that the expression level of the MLPH gene during embryonic development of Beijing white quail was significantly higher than that of Korean quail (P<0.01). The frequency distribution of the three genotypes (CC, CA and AA) of the Beijing white quail at the c.1807C > A mutation site was significantly different from that of the Korean quail (P<0.01). The frequency distribution of the three genotypes (GG, GA and AA) of the Beijing white quail at the c.2129G > A mutation site was significantly different from that of the Korean quail (P<0.01). And there was a significant correlation between the c.1807C > A mutation site and the white plumage phenotype. Bioinformatics showed that SNP1 (c.1807C > A) was a neutral mutation and that SNP2 (c.2129G > A) was a deleterious mutation. The prediction of protein conservation showed that the mutation sites of coding proteins R603S and G710D caused by SNP1 (c.1807C > A) and SNP2 (c.2129G > A) were highly conserved.

Funder

Natural Science Foundation of Henan Province

Publisher

Copernicus GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3