The mirror mode: a “superconducting” space plasma analogue

Author:

Treumann Rudolf A.ORCID,Baumjohann WolfgangORCID

Abstract

Abstract. We examine the physics of the magnetic mirror mode in its final state of saturation, the thermodynamic equilibrium, to demonstrate that the mirror mode is the analogue of a superconducting effect in a classical anisotropic-pressure space plasma. Two different spatial scales are identified which control the behaviour of its evolution. These are the ion inertial scale λim(τ) based on the excess density Nm(τ) generated in the mirror mode, and the Debye scale λD(τ). The Debye length plays the role of the correlation length in superconductivity. Their dependence on the temperature ratio τ=T‖/T⟂<1 is given, with T⟂ the reference temperature at the critical magnetic field. The mirror-mode equilibrium structure under saturation is determined by the Landau–Ginzburg ratio κD=λim/λD, or κρ=λim/ρ, depending on whether the Debye length or the thermal-ion gyroradius ρ – or possibly also an undefined turbulent correlation length ℓturb – serve as correlation lengths. Since in all space plasmas κD≫1, plasmas with λD as the relevant correlation length always behave like type II superconductors, naturally giving rise to chains of local depletions of the magnetic field of the kind observed in the mirror mode. In this way they would provide the plasma with a short-scale magnetic bubble texture. The problem becomes more subtle when ρ is taken as correlation length. In this case the evolution of mirror modes is more restricted. Their existence as chains or trains of larger-scale mirror bubbles implies that another threshold, VA>υ⟂th, is exceeded. Finally, in case the correlation length ℓturb instead results from low-frequency magnetic/magnetohydrodynamic turbulence, the observation of mirror bubbles and the measurement of their spatial scales sets an upper limit on the turbulent correlation length. This might be important in the study of magnetic turbulence in plasmas.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3