Araucaria growth response to solar and climate variability in South Brazil
-
Published:2018-05-09
Issue:3
Volume:36
Page:717-729
-
ISSN:1432-0576
-
Container-title:Annales Geophysicae
-
language:en
-
Short-container-title:Ann. Geophys.
Author:
Prestes Alan, Klausner VirginiaORCID, Rojahn da Silva Iuri, Ojeda-González Arian, Lorensi Caren
Abstract
Abstract. In this work, the Sun–Earth–climate relationship is studied using tree growth rings of Araucaria angustifolia (Bertol.) O. Kuntze collected in the city of Passo Fundo, located in the state of Rio Grande do Sul (RS), Brazil. These samples were previously studied by Rigozo et al. (2008); however, their main interest was to search for the solar periodicities in the tree-ring width mean time series without interpreting the rest of the periodicities found. The question arises as to what are the drivers related to those periodicities. For this reason, the classical method of spectral analysis by iterative regression and wavelet methods are applied to find periodicities and trends present in each tree-ring growth, in Southern Oscillation Index (SOI), and in annual mean temperature anomaly between the 24 and 44∘ S. In order to address the aforementioned question, this paper discusses the correlation between the growth rate of the tree rings with temperature and SOI. In each tree-ring growth series, periods between 2 and 7 years were found, possibly related to the El Niño/La Niña phenomena, and a ∼ 23-year period was found, which may be related to temperature variation. These novel results might represent the tree-ring growth response to local climate conditions during its lifetime, and to nonlinear coupling between the Sun and the local climate variability responsible to the regional climate variations. Keywords. History of geophysics (solar–planetary relationships) – meteorology and atmospheric dynamics (climatology; palaeoclimatology)
Publisher
Copernicus GmbH
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics
Reference72 articles.
1. Ammons, R., Ammons, A., and Ammons, R. B.: Solar Activity Related Quasi-Cycles in Tertiary Tree-Ring Records: Evidence and Methodological Studies, in: Weather and Climate Responses to Solar Variations, edited by: McCormac, B. M., p. 535, Colorado Associated University Press, 1983. a 2. Andreacci, F., Botosso, P., and Galvão, F.: Sinais climáticos em anéis de crescimento de Cedrela Fissilis em diferentes tipologias de Florestas Ombrófilas do Sul do Brasil, Floresta, 44, 323–332, https://doi.org/10.5380/rf.v44i2.27316, 2013. a, b 3. Berlato, M. and Fontana, D.: El Niño e La Niña: impactos no clima, na vegetação e na agricultura do Rio Grande do Sul: aplicações de previsões climáticas na agricultura, Editora da UFRGS, 2003. a 4. Case, R. A. and MacDonald, G. M.: A dendroclimatic reconstruction of annual precipitation on the western Canadian prairies since AD 1505 from Pinus flexilis James, Quaternary Res., 44, 267–275, https://doi.org/10.1006/qres.1995.1071, 1995. a 5. Clúa de Gonzalez, A. L., Gonzalez, W. D., Dutra, S. L. G., and Tsurutani, B. T.: Periodic variation in the geomagnetic activity: A study based on the Ap index, J. Geophys. Res.-Space, 98, 9215–9231, https://doi.org/10.1029/92JA02200, 1993. a
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|