Cavitons and spontaneous hot flow anomalies in a hybrid-Vlasov global magnetospheric simulation
-
Published:2018-08-08
Issue:4
Volume:36
Page:1081-1097
-
ISSN:1432-0576
-
Container-title:Annales Geophysicae
-
language:en
-
Short-container-title:Ann. Geophys.
Author:
Blanco-Cano XochitlORCID, Battarbee MarkusORCID, Turc LucileORCID, Dimmock Andrew P.ORCID, Kilpua Emilia K. J., Hoilijoki SanniORCID, Ganse UrsORCID, Sibeck David G., Cassak Paul A., Fear Robert C., Jarvinen RikuORCID, Juusola Liisa, Pfau-Kempf YannORCID, Vainio Rami, Palmroth MinnaORCID
Abstract
Abstract. In this paper we present the first identification of foreshock cavitons and
the formation of spontaneous hot flow anomalies (SHFAs) with the Vlasiator
global magnetospheric hybrid-Vlasov simulation code. In agreement with
previous studies we show that cavitons evolve into SHFAs. In the presented
run, this occurs very near the bow shock. We report on SHFAs surviving the
shock crossing into the downstream region and show that the interaction of
SHFAs with the bow shock can lead to the formation of a magnetosheath cavity,
previously identified in observations and simulations. We report on the first
identification of long-term local weakening and erosion of the bow shock,
associated with a region of increased foreshock SHFA and caviton formation,
and repeated shock crossings by them. We show that SHFAs are linked to an
increase in suprathermal particle pitch-angle spreads. The realistic length
scales in our simulation allow us to present a statistical study of global
caviton and SHFA size distributions, and their comparable size distributions
support the theory that SHFAs are formed from cavitons. Virtual spacecraft
observations are shown to be in good agreement with observational studies.
Funder
H2020 Marie Skłodowska-Curie Actions Academy of Finland European Research Council
Publisher
Copernicus GmbH
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics
Reference56 articles.
1. Archer, M. O., Horbury, T. S., Eastwood, J. P., Weygand, J. M., and Yeoman,
T. K.: Magnetospheric response to magnetosheath pressure pulses: A
low-pass filter effect, J. Geophys. Res.-Space, 118, 5454–5466,
https://doi.org/10.1002/jgra.50519,
2013. a 2. Bale, S. D., Balikhin, M. A., Horbury, T. S., Krasnoselskikh, V. V.,
Kucharek, H., Möbius, E., Walker, S. N., Balogh, A., Burgess,
D., Lembège, B., Lucek, E. A., Scholer, M., Schwartz, S. J.,
and Thomsen, M. F.: Quasi-perpendicular Shock Structure and Processes,
Space Sci. Rev., 118, 161–203, https://doi.org/10.1007/s11214-005-3827-0, 2005. a 3. Blanco-Cano, X., Omidi, N., and Russell, C. T.: Macrostructure of
collisionless bow shocks: 2. ULF waves in the foreshock and magnetosheath,
J. Geophys. Res., 111, A10205, https://doi.org/10.1029/2005JA011421, 2006. a 4. Blanco-Cano, X., Omidi, N., and Russell, C. T.: Global hybrid
simulations: Foreshock waves and cavitons under radial interplanetary
magnetic field geometry, J. Geophys. Res., 114, A01216,
https://doi.org/10.1029/2008JA013406, 2009. a, b, c 5. Blanco-Cano, X., Kajdič, P., Omidi, N., and Russell, C. T.:
Foreshock cavitons for different interplanetary magnetic field geometries:
Simulations and observations, J. Geophys. Res., 116, A09101,
https://doi.org/10.1029/2010JA016413, 2011. a
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|