Putting the "vap" into evaporation

Author:

Shuttleworth W. J.

Abstract

Abstract. In the spirit of the Special Issue of HESS to which it contributes, this paper documents the origin and development of the science of natural evaporation from land surfaces over the last 30–35 years, since the symposium A View from the Watershed was held to commemorate the opening of the new Institute of Hydrology (IH) building in 1973. Important subsequent technical progress includes the ability to measure routinely the diurnal cycle of near-surface meteorological variables using automatic weather stations, and of surface energy and momentum exchanges using automated implementations of the Bowen Ratio/Energy Budget technique and the Eddy Correlation technique, along with the capability to estimate the "fetch" for which these measurements apply. These improvements have been complemented by new methods to measure the separate components of evaporation, including: the interception process using randomly relocated below-canopy gauges, transpiration fluxes from individual leaves/shoots using porometers and from plants/plant components using stem-flow gauges and soil evaporation using micro-lysimeters and soil moisture depletion methods. In recent years progress has been made in making theory-based area-average estimates of evaporation using scintillometers, and model-based area-average estimates by assembling many streams of relevant data into Land Data Assimilation Systems. Theoretical progress has been made in extending near-surface turbulence theory to accommodate the effect of the "excess" boundary layer resistance to leaf-to-air transfer of energy and mass fluxes relative to that for momentum, and to allow for observed shortcoming in stability factors in the transition layer immediately above vegetation. Controversy regarding the relative merits of multi-layer model and "big leaf" representations of whole-canopy exchanges has been resolved in favour of the latter approach. Important gaps in the theory of canopy-atmosphere interactions have been filled, including recognising the need, separately, to represent dry-canopy and wet-canopy evaporation in models and the capability to describe wet-to-dry canopy transitions as well as the ability to describe sparse vegetation canopies which only partly cover the underlying soil. There is progress in methods of estimating crop water requirements, but an important recommendation of this paper is that this progress should continue by introducing use of an effective stomatal resistance rather than crop factors. The paper draws attention to relevant theoretical insight on this issue. Progress in theoretical understanding of evaporation processes has been used in the creation of numerous Land Surface Parameterisations (LSPs), the models used to represent land-surface interaction in climate and weather forecast models, and there have been important advances in describing the behaviour of plant stomata in LSPs. A major investment over the last 25 years in conducting Large-Scale Field Experiments, the better to measure, understand and model coupled land-surface/atmosphere interactions, has resulted in improvements in the capabilities of global climate models and the ability of mesoscale meteorological models to describe the enhanced circulation resulting from different forms of land-surface heterogeneity. Progress in understanding why early equations for potential evapotranspiration can be adequate in certain conditions is reviewed. The paper concludes with recommendations for future research.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3