Low confidence in multi-decadal trends of wind-driven upwelling across the Benguela Upwelling System

Author:

Bordbar Mohammad HadiORCID,Mohrholz VolkerORCID,Schmidt Martin

Abstract

Abstract. Like other eastern boundary upwelling systems, in the Benguela Upwelling System, the upwelling along the coastline is primarily alongshore-wind-driven. In contrast, it is mainly driven by the wind stress curl farther offshore. The surface wind regime across the Benguela Upwelling System is strongly related to the South Atlantic Anticyclone that is believed to migrate poleward in response to anthropogenic global warming. Using the European Centre for Medium-Range Weather Forecasts ERA5 reanalysis for 1979–2021, we investigate multi-decadal changes in the South Atlantic Anticyclone and their impacts on coastal upwelling driven by alongshore winds, wind-stress-curl-driven upwelling within the coastal zone and total upwelling as the sum of both across the Benguela Upwelling System. Even though the detailed structure of surface wind over the coastal zone matters for both alongshore-wind-driven coastal upwelling and wind-stress-curl-driven upwelling, we show that it is not of major importance for the total amount of upwelled water. We found a robust connection between the anticyclone intensity and the zonally integrated wind-stress-curl-driven and total upwelling. However, such connection for the alongshore-wind-driven coastal upwelling is weak. The upwelling in the equatorward portion of the Benguela Upwelling System is significantly affected by the anticyclone intensity. In contrast, the poleward portion is also influenced by the meridional position of the anticyclone. In general, the impacts of the anticyclone on the local upwelling are more robust during the austral winter. The multi-decadal trend in the sea level pressure across the South Atlantic renders a considerable heterogeneity in space. However, this trend features a small signal-to-noise ratio and can be obscured by interannual to decadal climate variability. This view is further supported by the coastal and wind-stress-curl-driven upwelling in several upwelling cells showing hardly any significant multi-decadal trends.

Funder

Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3