Discussing the role of tropical and subtropical moisture sources in cold season extreme precipitation events in the Mediterranean region from a climate change perspective

Author:

Krichak S. O.,Feldstein S. B.,Alpert P.ORCID,Gualdi S.ORCID,Scoccimarro E.ORCID,Yano J.-I.

Abstract

Abstract. This paper presents a review of a large number of research studies performed during the last few decades that focused on the investigation of cold season extreme precipitation events (EPEs) in the Mediterranean region (MR). The publications demonstrate the important role of anomalously intense transports of moist air from the tropical and subtropical Atlantic in the occurrence of EPEs in the MR. EPEs in the MR are directly or indirectly connected to narrow bands with a high concentration of moisture in the lower troposphere, i.e., atmospheric rivers, along which a large amount of moisture is transported from the tropics to midlatitudes. Whereas in a significant fraction of the EPEs in the western MR moisture is transported to the MR from the tropical Atlantic, EPEs in the central, and especially the eastern, MR are more often associated with intense tropical moisture transports over North Africa and the Red Sea. The moist air for the EPEs in the latter part of the MR also mainly originates from the tropical Atlantic and Indian oceans, and in many cases it serves as a temporary moisture reservoir for future development. The paper is supplemented by the results of a test for a possible connection between declining Arctic sea ice and the climatology of intense precipitation in the eastern MR. Based on the results of the evaluation supporting those from the earlier climate change analyses and modeling studies, it is concluded that a further anthropogenic global warming may lead a greater risk of higher rainfall totals and therefore larger winter floods in western and central parts of the MR as a consequence of stronger and more numerous Atlantic atmospheric rivers, possibly accompanied by a decline in the number of EPEs in the eastern part of the MR.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3