ISSM-SESAW v1.0: mesh-based computation of gravitationally consistent sea level and geodetic signatures caused by cryosphere and climate driven mass change

Author:

Adhikari S.ORCID,Ivins E. R.ORCID,Larour E.

Abstract

Abstract. A classical Green's function approach to computing gravitationally consistent sea level variations, following mass redistribution on the earth surface, employed in contemporary state-of-the-art sea-level models naturally suits the spectral methods for numerical evaluation. The capability of these methods to resolve high wave number features such as small glaciers is limited by the need for large numbers of pixels and high-degree (associated Legendre) series truncation. Incorporating a spectral model into (components of) earth system models that generally operate on an unstructured mesh system also requires cumbersome and repetitive forward and inverse transform of solutions. In order to overcome these limitations of contemporary models, we present a novel computational method that functions efficiently on a flexible mesh system, thus capturing the physics operating at kilometer-scale yet capable of simulating geophysical observables that are inherently of global scale with minimal computational cost. The model has numerous important geophysical applications. Coupling to a local mesh of 3-D ice-sheet model, for example, allows for a refined and realistic simulation of fast-flowing outlet glaciers, while simultaneously retaining its global predictive capability. As an example model application, we provide time-varying computations of global geodetic and sea level signatures associated with recent ice sheet changes that are derived from space gravimetry observations.

Funder

Jet Propulsion Laboratory

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3