Anomaly Detection with Decision Trees for AI Assisted Evaluation of Signal Integrity on PCB Transmission Lines

Author:

Ecik Emre,John WernerORCID,Withöft Julian,Götze Jürgen

Abstract

Abstract. Printed circuit board (PCB) design can be supported to a high degree by adding AI modules to the design system. Predictions from these modules can be made available to the designer in order to speed up circuit design and make it more efficient. Problems regarding signal integrity (SI) can be detected in time by providing hints on component connection or routing. However, the optimization and ML methods used in this context are usually very sophisticated (e.g., Bayesian optimization). Therefore, the design parameters provided by the AI modules must be accepted without further insights (for the experienced as well as the inexperienced designer). In this paper, a decision tree for anomaly detection and SI verification is presented, which by nature of this algorithm provides insights to the decisions made to obtain the proposed design parameters. Using a point-to-point (P2P) network as an example, the prediction accuracy of the AI model is investigated. It is shown that assessing SI effects with a decision tree provides a simple approach to obtain the suggested design. Furthermore, the predictions of the decision tree can be verified against the design rules.

Funder

Bundesministerium für Wirtschaft und Energie

Publisher

Copernicus GmbH

Subject

General Medicine

Reference33 articles.

1. Ambasana, N., Bhatti, O. W., Dolatsara, M. A., Swaminathan, M., Yang, X., Paladhi, P. R., and Becker, W. D.: Invertible Neural Networks for High-Speed Channel Design & Parameter Distribution Estimation, 2021 IEEE 30th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), Austin, USA, 17–20 October 2021, 1–3, https://doi.org/10.1109/EPEPS51341.2021.9609225, 2021. a

2. Bortolazzi, J. and Müller-Glaser, K.D.: Rechnergestützte Spezifikation in einer integrierten Entwurfsumgebung für anwendungsspezifische Systeme, in: Rechnergestützter Entwurf und Architektur mikroelektronischer Systeme, Informatikfachberichte, 255, edited by: Reusch, B., Springer, Berlin, Heidelberg, Germany, 75–90, https://doi.org/10.1007/978-3-642-84304-4_8, 1990. a

3. Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J.: Classification and Regression Trees, Chapman & Hall/CRC, New York, USA, ISBN 978-0-412-04841-8, 1984. a

4. Casas, P., Fiadino, P., and D'Alconzo, A.: Machine-Learning Based Approaches for Anomaly Detection and Classification in Cellular Networks, in: Proceedings of the 8th International Workshop on Traffic Monitoring and Analysis, TMA 2016, Louvain la Neuve, Belgium, 7–8 April, ISBN 978-3-901882-92-0, 2016. a, b

5. Ecik, E., John, W., Withöft, J., Brüning, R., and Götze, J.: Signal Integrity Design of PCB Transmission Paths using a Decision Tree Approach, 2023 International Symposium on Electromagnetic Compatibility – EMC Europe, Krakow, Poland, 1–6, https://doi.org/10.1109/EMCEurope57790.2023.10274174, 2023. a

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AI Workbench - Conceptual Workflow to Develop AI Models for SI/PI-Applications in PCB Development;2024 IEEE Joint International Symposium on Electromagnetic Compatibility, Signal & Power Integrity: EMC Japan / Asia-Pacific International Symposium on Electromagnetic Compatibility (EMC Japan/APEMC Okinawa);2024-05-20

2. AI Models for Supporting SI Analysis on PCB Net Structures: Comparing Linear and Non-Linear Data Sources;Advances in Radio Science;2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3