MEASURING SUNFLOWER NITROGEN STATUS FROM AN UNMANNED AERIAL VEHICLE-BASED SYSTEM AND AN ON THE GROUND DEVICE

Author:

Agüera F.,Carvajal F.,Pérez M.

Abstract

Abstract. Precision agriculture recognizes the inherent spatial variability associated with soil characteristics, land morphology and crop growth, and uses this information to prescribe the most appropriate management strategy on a site-specific basis. To reach this task, the most important information related with crop growth is nutrient status, weed infestation, disease and pet affectation and water management. The application of fertilizer nitrogen to field crops is of critical importance because it determines plant's gro wth, vigour, colour and yield. Furthermore, nitrogen has been observed as a nutrient with high spatial variability in a single field, related to its high mobility. Some previous works have shown that is possible to measure crop nitrogen status with optical instruments. Since most leaf nitrogen is contained in chlorophyll molecules, there is a strong relationship between leaf nitrogen and leaf chlorophyll content, which is the basis for predicting crop nitrogen status by measuring leaf reflectance. So, sensors that can easily monitor crop nitrogen amount throughout the growing season at a high resolution to allow producers to reach their production goals, will give useful information to prescribe a crop management on a site-specific basis. Sunflower is a crop which is taking importance again because it can be used both for food and biofuel purposes, and it is widely cultivated in the South of Spain and other European countries.The aim of this work was to compare an index related with sunflower nitrogen status, deduced from multispectral images taken from an Unmanned Aerial Vehicle (UAV), with optical data collected with a ground-based platform.An ADC Lite Tetracam digital cam was mounted on a md4-200 Microdrones to take pictures of a sunflower field during the crop season. ADC Lite Tetracam is a single sensor digital camera designed for capture of visible light wavelength longer than 520 nm and near-infrared wavelength up to 920 nm. The md4-200 Microdrones is an UAV which can be programmed to follow a route defined by several way-points and actions. The ground-based device was a Pacific Vision, Inc. multispectral radiometer. Four images with both systems were taken during the crop season and an index related with nitrogen crop status was calculated from them and compared in a sunflower field that had four irrigation treatments and eight nitrogen application rates, resulting in 32 plots of 7 m by 3.4 m, with a plant density of 7.1 plants m-2. Calculated Normalized Difference Vegetation Index (NDVI) from both measurement systems was a good indicator of nitrogen applied, but the UAV-based system provided a better estimate than ground-based system because in the first system was possible to eliminate the soil and shadows for calculating the index..

Publisher

Copernicus GmbH

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. IoT‐Enabled Unmanned Aerial Vehicle: An Emerging Trend in Precision Farming;Advances in Geographical and Environmental Sciences;2024

2. Single-plant broccoli growth monitoring using deep learning with UAV imagery;Computers and Electronics in Agriculture;2023-04

3. Potato Crop Health Assessment Using Multispectral Image Analysis;2022 International Conference on Future Trends in Smart Communities (ICFTSC);2022-12-01

4. Multispectral Image Analysis for Crop Health Monitoring System;2022 IEEE 5th International Symposium in Robotics and Manufacturing Automation (ROMA);2022-08-06

5. Ground versus aerial canopy reflectance of corn: Red‐edge and non‐red edge vegetation indices;Agronomy Journal;2021-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3