AUTOMATIC RECOGNITION OF PIPING SYSTEM FROM LARGE-SCALE TERRESTRIAL LASER SCAN DATA

Author:

Kawashima K.,Kanai S.,Date H.

Abstract

Abstract. Recently, changes in plant equipment have been becoming more frequent because of the short lifetime of the products, and constructing 3D shape models of existing plants (as-built models) from large-scale laser scanned data is expected to make their rebuilding processes more efficient. However, the laser scanned data of the existing plant has massive points, captures tangled objects and includes a large amount of noises, so that the manual reconstruction of a 3D model is very time-consuming and costs a lot. Piping systems especially, account for the greatest proportion of plant equipment. Therefore, the purpose of this research was to propose an algorithm which can automatically recognize a piping system from terrestrial laser scan data of the plant equipment. The straight portion of pipes, connecting parts and connection relationship of the piping system can be recognized in this algorithm. Eigenvalue analysis of the point clouds and of the normal vectors allows for the recognition. Using only point clouds, the recognition algorithm can be applied to registered point clouds and can be performed in a fully automatic way. The preliminary results of the recognition for large-scale scanned data from an oil rig plant have shown the effectiveness of the algorithm.

Publisher

Copernicus GmbH

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3