Comparison of operational satellite SO<sub>2</sub> products with ground-based observations in northern Finland during the Icelandic Holuhraun fissure eruption
-
Published:2015-06-03
Issue:6
Volume:8
Page:2279-2289
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Ialongo I.ORCID, Hakkarainen J.ORCID, Kivi R.ORCID, Anttila P., Krotkov N. A.ORCID, Yang K.ORCID, Li C., Tukiainen S.ORCID, Hassinen S.ORCID, Tamminen J.ORCID
Abstract
Abstract. This paper shows the results of the comparison of satellite SO2 observations from OMI (Ozone Monitoring Instrument) and OMPS (Ozone Mapping Profiler Suite) with ground-based measurements during the Icelandic Holuhraun fissure eruption in September 2014. The volcanic plume reached Finland on several days during the month of September. The SO2 total columns from the Brewer direct sun (DS) measurements in Sodankylä (67.42° N, 26.59° E), northern Finland, are compared to the satellite data. The operational satellite SO2 products are evaluated for high latitude conditions (e.g. large solar zenith angle, SZA). The results show that the best agreement can be found for lowest SZAs, close-to-nadir satellite pixels, cloud fraction below 0.3 and small distance between the station and the centre of the pixel. Under good retrieval conditions, the difference between satellite data and Brewer measurements remains mostly below the uncertainty on the satellite SO2 retrievals (up to about 2 DU at high latitudes). The satellite products assuming a priori profile with SO2 predominantly in the planetary boundary layer give total column values with the best agreement with the ground-based data. The analysis of the SO2 surface concentrations at four air quality stations in northern Finland shows that the volcanic plume coming from Iceland was located very close to the surface. This is connected to the fact that this was a fissure eruption and most of the SO2 was emitted into the troposphere. This is an exceptional case because the SO2 volcanic emissions directly affect the air quality levels at surface in an otherwise pristine environment like northern Finland. The time evolution of the SO2 concentrations peaks during the same days when large SO2 total column values are measured by the Brewer in Sodankylä and enhanced SO2 signal is visible over northern Finland from the satellite maps. Thus, the satellite retrievals were able to detect the spatiotemporal evolution of the volcanic plume as compared to the surface observations. Furthermore, direct-broadcast SO2 satellite data (from both OMI and OMPS instruments) are compared for the first time against ground-based observations.
Funder
Academy of Finland Tekes
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference29 articles.
1. Brenot, H., Theys, N., Clarisse, L., van Geffen, J., van Gent, J., Van Roozendael, M., van der A, R., Hurtmans, D., Coheur, P.-F., Clerbaux, C., Valks, P., Hedelt, P., Prata, F., Rasson, O., Sievers, K., and Zehner, C.: Support to Aviation Control Service (SACS): an online service for near-real-time satellite monitoring of volcanic plumes, Nat. Hazards Earth Syst. Sci., 14, 1099–1123, https://doi.org/10.5194/nhess-14-1099-2014, 2014. 2. Carn, S. A. and Lopez, T. M.: Opportunistic validation of sulfur dioxide in the Sarychev Peak volcanic eruption cloud, Atmos. Meas. Tech., 4, 1705–1712, https://doi.org/10.5194/amt-4-1705-2011, 2011. 3. Carn, S., Strow, L., de Souza-Machado, S., Edmonds, Y., and Hannon, S.: Quantifying tropospheric volcanic emissions with AIRS: the 2002 eruption of Mt. Etna (Italy), Geophys. Res. Lett., 32, L02301, https://doi.org/10.1029/2004GL021034, 2005. 4. Carn, S. A., Krueger, A. J., Krotkov, N. A., Yang, K., and Evans, K.: Tracking volcanic sulfur dioxide clouds for aviation hazard mitigation, Nat. Hazards, 51, 325–343, https://doi.org/10.1007/s11069-008-9228-4, 2008. 5. Carn, S. A., Yang, K., Prata, A. J., and Krotkov, N. A.: Extending the long-term record of volcanic SO2 emissions with the Ozone Mapping and Profiler Suite nadir mapper, Geophys. Res. Lett., 42, 925–932, https://doi.org/10.1002/2014GL062437, 2015.
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|