Surface deformation relating to the 2018 Lake Muir earthquake sequence, southwest Western Australia: new insight into stable continental region earthquakes

Author:

Clark Dan J.ORCID,Brennand SarahORCID,Brenn Gregory,Garthwaite Matthew C.ORCID,Dimech Jesse,Allen Trevor I.,Standen Sean

Abstract

Abstract. A shallow Mw 5.3 earthquake near Lake Muir in the stable continental region (SCR) crust of southwest Western Australia on the 16 September 2018 was followed on the 8 November by a proximal Mw 5.2 event. Focal mechanisms produced for the events suggest reverse and strike-slip rupture, respectively. Field mapping, guided by Sentinel-1 InSAR data, reveals that the first event produced an approximately 3 km long and up to 0.4–0.6 m high west-facing surface rupture, consistent with reverse slip on a moderately east-dipping fault. The InSAR data also show that the surface scarp relates to a subsurface rupture ∼ 5 km long, bound at its northern and southern extremities by bedrock structures. The November event produced a surface deformation envelope that is spatially coincident with that of the September event but did not result in discrete surface rupture. Almost 900 aftershocks were recorded by a temporary seismometer deployment. Hypocentre locations correlate poorly with the rupture plane of their respective mainshocks but correlate well with regions of increased Coulomb stress. The spatial and temporal relationships between the Mw>5.0 events and their aftershocks reveals dependencies with implications for how other less well-documented SCR earthquake sequences could be interpreted. Furthermore, the September Mw 5.3 Lake Muir earthquake was the ninth event documented to have produced surface rupture in Australia in historical times. These nine ruptures are located exclusively in the Precambrian non-extended SCR rocks of central and western Australia, and none could have been identified and mapped using topographic signature prior to the historical event. Consistent, though fragmentary, evidence exists from analogous regions worldwide. Our analysis of the Lake Muir earthquake sequence therefore provides constraint on models describing mechanisms for strain accumulation and localized release as earthquakes in non-extended SRC crust.

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Earth-Surface Processes,Geochemistry and Petrology,Geology,Geophysics,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3