Hybrid models of solar wind plasma heating

Author:

Ofman L.,Viñas A.-F.,Moya P. S.

Abstract

Abstract. Remote sensing and in-situ observations show that solar wind ions are often hotter than electrons, and the heavy ions flow faster than the protons by up to an Alfvén speed. Turbulent spectrum of Alfvénic fluctuations and shocks were detected in solar wind plasma. Cross-field inhomogeneities in the corona were observed to extend to several tens of solar radii from the Sun. The acceleration and heating of solar wind plasma is studied via 1-D and 2-D hybrid simulations. The models describe the kinetics of protons and heavy ions, and electrons are treated as neutralizing fluid.The expansion of the solar wind is considered in 1-D hybrid model. A spectrum of Alfvénic fluctuations is injected at the computational boundary, produced by differential streaming instability, or initial ion temperature anisotropy, and the parametric dependence of the perpendicular heating of H+-He++ solar wind plasma is studied. It is found that He++ ions are heated efficiently by the Alfvénic wave spectrum below the proton gyroperiod.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3