Technical note: An open-source, low-cost system for continuous monitoring of low nitrate concentrations in soil and open water

Author:

Bulusu Sahiti,Prieto García Cristina,Dahlke Helen E.ORCID,Levintal EladORCID

Abstract

Abstract. Nitrate (NO3-), mainly leaching with soil porewater, is the primary nonpoint source pollutant of groundwater worldwide. Obtaining real-time information on nitrate levels in soils would allow for gaining a better understanding of the sources and transport dynamics of nitrate through the unsaturated zone. However, conventional nitrate detection techniques (e.g., soil sample analysis) necessitate costly, laboratory-grade equipment for analysis, along with human resources, resulting in a laborious and time-intensive procedure. These drawbacks raise the need to develop cost-effective and automated systems for in situ nitrate measurements in field conditions. This study presents the development of a low-cost, portable, automated system for field measurements of nitrate in soil porewater and open water bodies. The system is based on the spectrophotometric determination of nitrate using a single reagent. The system design and processing software are openly accessible, including a building guide, to allow duplicating or changing the system according to user-specific needs. Three field tests, conducted over 5 weeks, validated the system's measurement capabilities within the range of 0–10 ppm NO3-–N with a low RMSE of <0.2 ppm NO3-–N when comparing the results to standard laboratory nitrate analysis. Data derived from such a system allow for tracking of the temporal variation in soil nitrate, thus opening new possibilities for diverse soil and nutrient management studies.

Funder

Gordon and Betty Moore Foundation

United States - Israel Binational Agricultural Research and Development Fund

National Institute of Food and Agriculture

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3