Reconnoitering the effect of shallow groundwater on land surface temperature and surface energy balance using MODIS and SEBS

Author:

Alkhaier F.,Su Z.,Flerchinger G. N.

Abstract

Abstract. The possibility of observing shallow groundwater depth and areal extent using satellite measurements can support groundwater models and vast irrigation systems management. Besides, these measurements help bringing groundwater effect on surface energy balance within land surface models and climate studies. To inspect the MODIS capacity of detecting shallow groundwater effect on land surface temperature and surface energy balance in an area within Al-Balikh River basin in northern Syria, we investigated the interrelationship between in-situ measured water table depths and land surface temperatures of MODIS. Further, we used the Surface Energy Balance System (SEBS) to calculate surface energy fluxes, evaporative fraction and daily evaporation, and inspected their relationships with water table depths. In agreement with the findings of a companion paper (Alkhaier et al., 2011), we found that daytime temperature increased and nighttime temperature decreased with increasing water table depth. Where water table depth increased, net radiation, latent and ground heat fluxes, evaporative fraction and daily evaporation decreased, while sensible heat flux increased. The clear observed relationships resulted from meeting both conditions concluded in the companion paper, i.e. high potential evaporation and big contrast in air temperature. Moreover, the prevailing conditions in this study area helped SEBS producing accurate estimates. We conclude that MODIS is suitable for shallow groundwater effect detection since it has proper imaging times and appropriate sensor accuracy; nevertheless, its coarse spatial resolution is disadvantageous.

Publisher

Copernicus GmbH

Reference35 articles.

1. Alkhaier, F.: Soil Salinity Detection Using Satellite Remote Sensing, M.Sc. thesis, International Institute for Geo-Information Science and Earth Observation, The Netherlands, 2003.

2. Alkhaier, F., Su, Z., and Flerchinger, G. N.: The effect of shallow groundwater on land surface temperature and surface energy balance under the conditions of bare soil: Modeling and Description, Hydrol. Earth Syst. Sc. Discuss., 8, 1–32, 2011.

3. Badola, A.: Validation of Surface Energy Balance System (SEBS) over Forest Land Cover and Sensitivity Analysis of the Model, M.Sc. thesis, International Institute for Geo-information Science and Earth Observation, The Netherlands, 2009.

4. Bastiaanssen, W. G. M., Molden, D. J., and Makin, I. W.: Remote sensing for irrigated agriculture: examples from research and possible applications, Agr. Water Manage., 46, 137–155, 2000.

5. Becker, M. W.: Potential for satellite remote sensing of ground water, Ground Water, 44, 306–318, 2006.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3