Shallow rainwater lenses in deltaic areas with saline seepage

Author:

de Louw P. G. B.,Eeman S.,Siemon B.,Voortman B. R.,Gunnink J.,van Baaren E. S.,Oude Essink G. H. P.

Abstract

Abstract. In deltaic areas with saline seepage, fresh water availability is often limited to shallow rainwater lenses lying on top of saline groundwater. Here we describe the characteristics and spatial variability of such lenses in areas with saline seepage and the mechanisms that control their occurrence and size. Our findings are based on different types of field measurements and detailed numerical groundwater models applied in the south-western delta of The Netherlands. By combining the applied techniques we could extrapolate in situ measurements at point scale (groundwater sampling, TEC (temperature and electrical soil conductivity)-probe measurements, electrical cone penetration tests (ECPT)) to a field scale (continuous vertical electrical soundings (CVES), electromagnetic survey with EM31), and even to a regional scale using helicopter-borne electromagnetic measurements (HEM). The measurements show a gradual S-shaped mixing zone between infiltrating fresh rainwater and upward flowing saline groundwater. The mixing zone is best characterized by the depth of the centre of the mixing zone Dmix, where the salinity is half that of seepage water, and the bottom of the mixing zone Bmix, with a salinity equal to that of the seepage water (Cl-conc. 10 to 16 g l−1). Dmix manifests at very shallow depth in the confining top layer, on average at 1.7 m below ground level (b.g.l.), while Bmix lies about 2.5 m b.g.l. Head-driven forced convection is the main mechanism of rainwater lens formation in the saline seepage areas rather than free convection due to density differences. Our model results show that the sequence of alternating vertical flow directions in the confining layer caused by head gradients determines the position of the mixing zone (Dmix and Bmix and that these flow directions are controlled by seepage flux, recharge and drainage depth.

Publisher

Copernicus GmbH

Reference63 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3