Author:
Fogel M. L.,Wooller M. J.,Cheeseman J.,Smallwood B. J.,Roberts Q.,Romero I.,Jacobsen Meyers M.
Abstract
Abstract. Extremes in (δ15N values in mangrove tissues and lichens (range = +4 to −22‰) were measured from a mangrove forest ecosystem located on Twin Cays, offshore islands in Belize, Central America. The N isotopic compositions and concentrations of NH4+/NH3 in porewater, rainwater, atmospheric ammonia, mangrove leaves, roots, stems, and wood, and lichens, were examined to study the biogeochemical processes important for establishing these unusual N isotopic ratios. Porewater ammonium concentrations had little to no relationship to N isotopic fractionation in mangrove tissues. The δ15N of fine and coarse roots was 9‰ more positive than leaf tissue from the same tree. When P was added to dwarfed mangrove trees without added N, δ15N increased within one year to a &delta:15N closer to the &delta:15N of porewater ammonium (δ15N=+4‰). Isotopically negative ammonia in the atmosphere (δ15N=−18‰) and in rainwater (δ15N=−9‰) were found on Twin Cays and may be sources of available N for isotopically depleted mangrove trees and lichens. In highly stressed, severely P limited trees, uptake of atmospheric N by Rhizophora mangle may be an important adaptive strategy.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献