Evaluation of total ozone measurements from Geostationary Environmental Monitoring Spectrometer (GEMS)

Author:

Baek Kanghyun,Kim Jae HwanORCID,Bak JuseonORCID,Haffner David P.ORCID,Kang Mina,Hong Hyunkee

Abstract

Abstract. The continued interest in air pollution and stratospheric ozone variability has motivated the development of a Geostationary Environmental Monitoring Spectrometer (GEMS) for hourly ozone monitoring. This paper provides the atmospheric science community with the world's first assessment of GEMS total column ozone (TCO) retrieval performance and diurnal ozone variation. The algorithm used for GEMS is a more advanced version of its predecessor, the Total Ozone Mapping Spectrometer (TOMS) V8, that incorporates several improvements, including a new lookup table, a simple Lambertian-equivalent reflectivity model, and a spectral dependence correction. The GEMS algorithm also uses the optimal estimation method (OEM) to make error analysis more accessible and robust. The estimated retrieval errors range from 1.5 to 2 DU in September and 2 DU in December, with a constant degree of freedom of the signal (DFS) of 1 in September and a variable DFS of 1.25 to 1.4 in December throughout the day, depending on solar zenith angle (SZA). To assess the performance of the GEMS algorithm, the hourly GEMS total ozone was compared with ground-based measurements from Pandora instruments and other satellite platforms from TROPOMI (TROPOspheric Monitoring Instrument) and OMPS (Ozone Mapping and Profiler Suite Nadir Mapper). GEMS has a high correlation of 0.97 and small RMSE values compared to Pandora TCO at Busan and Seoul in South Korea. It is notable that despite exhibiting seasonal dependence in the mean bias of GEMS with Pandora, GEMS is capable of observing daily variations in ozone that are highly consistent with Pandora measurements, with a bias of approximately 1 %. The comparison of GEMS TCO data with TROPOMI and OMPS TCO data shows a high correlation of 0.99 and low RMSE compared to TROPOMI and OMPS TCO data, but the data have a negative bias of −2.38 % and −2.17 %, with standard deviations of 1.33 % and 1.57 %, respectively. Similar to OMPS, the influence of SO2 from volcanic eruptions is not properly removed in some regions, leading to GEMS overestimating TCO in those areas. The mean biases of GEMS TCO data with TROPOMI and OMPS TCO are within ±1 % at low latitudes but become negative at midlatitudes, with an increasingly negative dependence on latitude. Furthermore, this dependence becomes more prominent from summer to winter. The empirical correction applied to the GEMS irradiance data improves the dependence of the mean bias on season and latitude, but a consistent bias still remains, and a marginal positive trend was observed in December. Therefore, further investigation into correction methods is needed. The results are a meaningful scientific advance by providing the first validated, hourly UV ozone retrievals from a satellite in geostationary orbit. This experience can be used to advance research with future geostationary environmental satellite missions, including the incoming TEMPO (Tropospheric Emissions: Monitoring of Pollution) and Sentinel-4.

Funder

National Institute of Environmental Research

National Research Foundation of Korea

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference49 articles.

1. Ahmad, Z.: Spectral properties of backscattered UV radiation in cloudy atmospheres, J. Geophys. Res., 109, D01201, https://doi.org/10.1029/2003JD003395, 2004.

2. Bhartia, P. and Haffner, D.: Highlights of TOMS Version 9 Total 30 Ozone Algorithm, in: Quadrennial Ozone Symposium, Toronto, Canada, 16 March 2012, https://ntrs.nasa.gov/citations/20120015035 (last access: 13 June 2023), 2012.

3. Bhartia, P. K.: OMI Algorithm Theoretical Basis Document, Tech. Rep. ATBD-OMI-02, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA, https://eospso.nasa.gov/sites/default/files/atbd/ATBD-OMI-02.pdf (last access: 13 June 2023), 2002.

4. Bhartia, P. K., McPeters, R. D., Mateer, C. L., Flynn, L. E., and Wellemeyer, C.: Algorithm for the estimation of vertical ozone profiles from the backscattered ultraviolet technique, J. Geophys. Res.-Atmos., 101, 18793–18806, https://doi.org/10.1029/96JD01165, 1996.

5. Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noël, S., Rozanov, V. V., Chance, K. V., and Goede, A. P. H.: SCIAMACHY: Mission Objectives and Measurement Modes, J. Atmos. Sci., 56, 127–150, https://doi.org/10.1175/1520-0469(1999)056, 1999.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3