Land Evaluation Configuration using Answer Set Programming

Author:

Karamesouti Mina,Tignon Etienne

Abstract

Abstract. In the realm of Land Evaluation (LE) interdisciplinary and transdisciplinary knowledge exchange is critical for land use preservation. Geographic Information Systems (GIS) are powerful tools for real-world Knowledge Representation (KR), facilitating inter- and transdisciplinary communication. In such knowledge exchange contexts, heterogeneity, ambiguity, abstraction are only indicative issues, underscoring the necessity for a rigorous commitment to broader transparency in KR. Answer Set Programming (ASP), a declarative, human-readable, logic-based formalism, could serve this objective and facilitate productive, case-relevant dialogues. Similarly to the fundamental GIS knowledge organization structures, ASP formalizes knowledge as entities and relations between them. In current work, leveraging Rossiter’s theoretical framework for LE, and employing ASP, we aim for greater transparency in the epistemological and ontological assumptions underpinning the complex LE problem. ASP-based system configuration is used to formalize the LE Problem Instance as Components (C) with Properties (P) and Values (V ). Fact-type specifications in predicate format materialize relations between problem components. Over 40 concepts, corresponding to distinct domains, 30 mereological relations and relational requirements between components, and 60 requirements on component properties have been described. We showcase the Problem Instance formalization of the non-spatial, single-area LE, based on Land Characteristics (LC), model type. The clear separation between domain knowledge (Problem Instance) and high-level theories (Problem Encoding) enables the consistent LE problem formalization using the ASP-based system configuration paradigm. A declarative Problem Instance formalization provides insight into the problem’s nature and assumptions. Modular knowledge formalization using ASP, among others, enhances flexibility, scalability, and adaptability, given new knowledge becomes available.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3