Single scattering by realistic, inhomogeneous mineral dust particles with stereogrammetric shapes

Author:

Lindqvist H.,Jokinen O.,Kandler K.,Scheuvens D.,Nousiainen T.

Abstract

Abstract. Light scattering by single, inhomogeneous mineral dust particles was simulated based on shapes and compositions derived directly from measurements of real dust particles instead of using a mathematical shape model. We demonstrate the use of the stereogrammetric shape retrieval method in the context of single-scattering modelling of mineral dust for four different dust types – all of them inhomogeneous – ranging from compact, equidimensional shapes to very elongated and aggregate shapes. The three-dimensional particle shapes were derived from stereo pairs of scanning-electron microscope images, and inhomogeneous composition was determined by mineralogical interpretation of localized elemental information based on energy-dispersive spectroscopy. Scattering computations were performed for particles of equal-volume diameters, from 0.08 μm up to 2.8 μm at 550 nm wavelength, using the discrete-dipole approximation. Particle-to-particle variation in scattering by mineral dust was found to be quite considerable and was not well reproduced by simplified shapes of homogeneous spheres, spheroids, or Gaussian random spheres. Effective-medium approximation results revealed that particle inhomogeneity should be accounted for even for small amounts of absorbing media (here up to 2% of the volume), especially when considering scattering by inhomogeneous particles at size parameters 3

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3