Chemical climatology of the southeastern United States, 1999–2013

Author:

Hidy G. M.,Blanchard C. L.ORCID,Baumann K.ORCID,Edgerton E.,Tanenbaum S.,Shaw S.,Knipping E.,Tombach I.,Jansen J.,Walters J.

Abstract

Abstract. A series of experiments (the Southern Oxidant and Aerosol Study – SOAS) took place in central Alabama in June–July, 2013 as part of the broader Southern Atmosphere Study (SAS). These projects were aimed at studying oxidant photochemistry and formation and impacts of aerosols at a detailed process level in a location where high biogenic organic vapor emissions interact with anthropogenic emissions, and the atmospheric chemistry occurs in a subtropical climate in North America. The majority of the ground-based experiments were located at the Southeastern Aerosol Research and Characterization (SEARCH) Centreville (CTR) site near Brent, Alabama, where extensive, unique aerometric measurements of trace gases and particles and meteorology were made beginning in the early 1990s through 2013. The SEARCH network data permits a characterization of the temporal and spatial context of the SOAS findings. Our earlier analyses of emissions and air quality trends are extended through 2013 to provide a perspective for continued decline in ambient concentrations, and the implications of these changes to regional sulfur oxide, nitrogen–ozone, and carbon chemistry. The narrative supports the SAS program in terms of long-term average chemistry (chemical climatology) and short-term comparisons of early summer average spatial variability across the southeastern US at high temporal (hourly) resolution. The long-term measurements show that the SOAS experiments took place during the second wettest and coolest year in the 2000–2013 period, with lower than average solar radiation. The pollution levels at CTR and other SEARCH sites were the lowest since full measurements began in 1999. Changes in anthropogenic gas and particle emissions between 1999 and 2013 account for the decline in pollutant concentrations at the monitoring sites in the region. The data provide an opportunity to contrast SOAS results with temporally and spatially variable conditions in support of the development of tests for the robustness of SOAS findings.

Funder

Southern Company

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3