Importance of transboundary transport of biomass burning emissions to regional air quality in Southeast Asia

Author:

Aouizerats B.,van der Werf G. R.,Balasubramanian R.,Betha R.

Abstract

Abstract. Smoke from biomass and peat burning has a notable impact on ambient air quality and climate in the Southeast Asia (SEA) region. We modeled the largest fire-induced haze episode in the past decade (2006) in Indonesia using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). We focused mainly on the evolution of the fire plume composition and its interaction with the urbanized area of the city-state of Singapore, and on comparisons of modeled and measured aerosol and CO concentrations. Two simulations were run with the model using the complex Volatility Basis Set (VBS) scheme to reproduce primary and secondary aerosol evolution and concentration. The first simulation referred to as WRF-FIRE included anthropogenic, biogenic, and b iomass burning emissions from the Global Fire Emissions Database (GFED3) while the second simulation referred to as WRF-NOFIRE was run without emissions from biomass burning. To test model performance, we used three independent datasets for comparison including airborne measurements of Particulate Matter with a diameter of 10 μm or less (PM10) in Singapore, CO measurements in Sumatra, and Aerosol Optical Depth (AOD) column observations from 4 satellite-based sensors. We found reasonable agreement of the model runs with both ground-based measurements of CO and PM10. The comparison with AOD was less favorable and indicated the model underestimated AOD, although the degree of mismatch varied between different satellite data sets. During our study period, forest and peat fires in Sumatra were the main cause of enhanced aerosol concentrations from regional transport over Singapore. Analysis of the biomass burning plume showed high concentrations of primary organic aerosols (POA) with values up to 600 μg m−3 over the fire locations. The concentration of POA remained quite stable within the plume between the main burning region and Singapore while secondary organic aerosol (SOA) concentration slightly increased. The absolute values of SOA (up to 20 μg m−3) were much lower than those from POA, indicating a minor role of SOA in biomass burning plumes. Our results show that about 21% of the total mass loading of ambient PM10 during the July–October study period in Singapore was due to biomass and peat burning in Sumatra, but this contribution increased during high burning periods. In total, our model results indicated that during 35 days aerosol concentrations in Singapore were above the threshold of 50 μg m−3 day−1 indicating poor air quality. During 17 days this was due to fires, based on the difference between the simulations with and without fires. Local pollution in combination with recirculation of air masses was probably the main cause of poor air quality during the other 18 days, although fires from Sumatra and probably also from Borneo added to the enhanced PM10 concentrations. The model vs. measurement comparisons highlighted that for our study period and region the GFED3 biomass burning aerosol emissions were more in line with observations than found in other studies. This indicates that care should be taken when using AOD to constrain emissions or estimate ground-level air quality. This study also shows the need for relatively high resolution modeling to accurately reproduce the advection of air masses necessary to quantify the impacts and feedbacks on air quality.

Funder

European Research Council

Publisher

Copernicus GmbH

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3