Amplification of black carbon light absorption induced by atmospheric aging: temporal variation at seasonal and diel scales in urban Guangzhou

Author:

Sun Jia YinORCID,Wu ChengORCID,Wu DuiORCID,Cheng Chunlei,Li Mei,Li LeiORCID,Deng Tao,Yu Jian ZhenORCID,Li Yong Jie,Zhou Qianni,Liang YueORCID,Sun Tianlin,Song Lang,Cheng Peng,Yang Wenda,Pei Chenglei,Chen Yanning,Cen Yanxiang,Nian Huiqing,Zhou Zhen

Abstract

Abstract. Black carbon (BC) aerosols have been widely recognized as a vital climate forcer in the atmosphere. Amplification of light absorption can occur due to coatings on BC during atmospheric aging, an effect that remains uncertain in accessing the radiative forcing of BC. Existing studies on the absorption enhancement factor (Eabs) have poor coverage on both seasonal and diurnal scales. In this study, we applied a recently developed minimum R squared (MRS) method, which can cover both seasonal and diurnal scales, for Eabs quantification. Using field measurement data in Guangzhou, the aims of this study are to explore (1) the temporal dynamics of BC optical properties at seasonal (wet season, 31 July–10 September; dry season, 15 November 2017–15 January 2018) and diel scales (1 h time resolution) in the typical urban environment and (2) the influencing factors on Eabs temporal variability. Mass absorption efficiency at 520 nm by primary aerosols (MAEp520) determined by the MRS method exhibited a strong seasonality (8.6 m2 g−1 in the wet season and 16.8 m2 g−1 in the dry season). Eabs520 was higher in the wet season (1.51±0.50) and lower in the dry season (1.29±0.28). Absorption Ångström exponent (AAE470–660) in the dry season (1.46±0.12) was higher than that in the wet season (1.37±0.10). Collective evidence showed that the active biomass burning (BB) in the dry season effectively altered the optical properties of BC, leading to elevated MAE, MAEp and AAE in the dry season compared to those in the wet season. Diurnal Eabs520 was positively correlated with AAE470–660 (R2=0.71) and negatively correlated with the AE33 aerosol loading compensation parameter (k) (R2=0.74) in the wet season, but these correlations were significantly weaker in the dry season, which may be related to the impact of BB. This result suggests that during the wet season, the lensing effect was more likely dominating the AAE diurnal variability rather than the contribution from brown carbon (BrC). Secondary processing can affect Eabs diurnal dynamics. The Eabs520 exhibited a clear dependency on the ratio of secondary organic carbon to organic carbon (SOC∕OC), confirming the contribution of secondary organic aerosols to Eabs; Eabs520 correlated well with nitrate and showed a clear dependence on temperature. This new finding implies that gas–particle partitioning of semivolatile compounds may potentially play an important role in steering the diurnal fluctuation of Eabs520. In the dry season, the diurnal variability in Eabs520 was associated with photochemical aging as evidenced by the good correlation (R2=0.69) between oxidant concentrations (Ox=O3+NO2) and Eabs520.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3