Drought and flood in the Anthropocene: feedback mechanisms in reservoir operation

Author:

Di Baldassarre GiulianoORCID,Martinez Fabian,Kalantari ZahraORCID,Viglione AlbertoORCID

Abstract

Abstract. Over the last few decades, numerous studies have investigated human impacts on drought and flood events, while conversely other studies have explored human responses to hydrological extremes. Yet, there is still little understanding about the dynamics resulting from their interplay, i.e. both impacts and responses. Current quantitative methods therefore can fail to assess future risk dynamics and, as a result, while risk reduction strategies built on these methods often work in the short term, they tend to lead to unintended consequences in the long term. In this paper, we review the puzzles and dynamics resulting from the interplay of society and hydrological extremes, and describe an initial effort to model hydrological extremes in the Anthropocene. In particular, we first discuss the need for a novel approach to explicitly account for human interactions with both drought and flood events, and then present a stylized model simulating the reciprocal effects between hydrological extremes and changing reservoir operation rules. Lastly, we highlight the unprecedented opportunity offered by the current proliferation of big data to unravel the coevolution of hydrological extremes and society across scales and along gradients of social and hydrological conditions.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Cited by 118 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3