RETRIEVING FOREST STRUCTURE VARIABLES FROM VERY HIGH RESOLUTION SATELLITE IMAGES USING AN AUTOMATIC METHOD

Author:

B. Beguet ,N. Chehata ,S. Boukir ,D. Guyon

Abstract

Abstract. The main goal of this study is to define a method to describe the forest structure of maritime pine stands from Very High Resolution satellite imagery. The emphasis is placed on the automatisation of the process to identify the most relevant image features, exploiting both spectral and spatial information. Our approach is based on linear regressions between the forest structure variables to be estimated and various spectral and Haralick’s texture features (derived from Grey Level Co-occurrence Matrix). The main drawback of this well- known texture representation is the underlying parameters (window size, displacement length, orientation and quantification level) which are extremely difficult to set due to the spatial complexity of forest structure. To tackle this major issue, probably the main cause of poor texture analysis in practice, we propose an automatic feature selection process whose originality lies on the use of image test frames of adequate forest samples whose forest structure variables were measured at ground. This method, inspired by camera calibration protocols, selects the best image features via statistical modelling, exploring a wide range of parameter values. Hence, just a few samples are required to build up the test frames but allow a fast assessment of thousands of descriptors, given the large number of tested combinations of parameters values. This method was developed and tested on Quickbird panchromatic and multispectral images. It has been successfully applied to the modelling of 7 typical forest structure variables (age, tree height, crown diameter, diameter at breast height, basal area, density and tree spacing). The coefficient of correlation, R2, of the best single models for 6 of the forest variables of interest, estimated from the test frames, ranges from 0.89 to 0.97. Only the basal area was weakly correlated to the considered image features (0.64). To improve the results, combinations of panchromatic and or multi-spectral features were tested using multiple linear regressions. As collinearity is a very perturbing problem in multi-linear regression, this issue is carefully addressed. Different variables subset selection methods are tested. A new stepwise method, derived from LARS (Least Angular Regression), turned out the most convincing, significantly improving the quality of estimation for all the forest structure variables (R2 > 0:98). Validation is done through stand ages retrieval along the whole site. The best estimation results are obtained from subsets combining multi-spectral and panchromatic features, with various values of window size, highlighting the potential of a multi-scale approach for retrieving forest structure variables from VHR satellite images.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3