LAND COVER CLASSIFICATION OF SATELLITE IMAGES USING CONTEXTUAL INFORMATION

Author:

Fröhlich B.,Bach E.,Walde I.,Hese S.,Schmullius C.,Denzler J.

Abstract

Abstract. This paper presents a method for the classification of satellite images into multiple predefined land cover classes. The proposed approach results in a fully automatic segmentation and classification of each pixel, using a small amount of training data. Therefore, semantic segmentation techniques are used, which are already successful applied to other computer vision tasks like facade recognition. We explain some simple modifications made to the method for the adaption of remote sensing data. Besides local features, the proposed method also includes contextual properties of multiple classes. Our method is flexible and can be extended for any amount of channels and combinations of those. Furthermore, it is possible to adapt the approach to several scenarios, different image scales, or other earth observation applications, using spatially resolved data. However, the focus of the current work is on high resolution satellite images of urban areas. Experiments on a QuickBird-image and LiDAR data of the city of Rostock show the flexibility of the method. A significant better accuracy can be achieved using contextual features.

Publisher

Copernicus GmbH

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Feature Extraction of Satellite Images Using Machine Learning;2024 International Conference on Innovations and Challenges in Emerging Technologies (ICICET);2024-06-07

2. Ghost: getting invisibly from position A to position B;Emerging Imaging and Sensing Technologies for Security and Defence VIII;2023-10-17

3. Employing Satellite Imagery on Investigation of Convolutional Neural Network Image Processing and Poverty Prediction Using Keras Sequential Model;2023 IEEE 5th International Conference on Cybernetics, Cognition and Machine Learning Applications (ICCCMLA);2023-10-07

4. Picture This: A Deep Learning Model for Operational Real Estate Emissions;Journal of Sustainable Real Estate;2023-09-21

5. Artificial Intelligence and Blockchain-Based Trading Framework for Satellite Images;2023 International Wireless Communications and Mobile Computing (IWCMC);2023-06-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3