Stream water sourcing from high-elevation snowpack inferred from stable isotopes of water: a novel application of d-excess values

Author:

Sprenger MatthiasORCID,Carroll Rosemary W. H.,Marchetti DavidORCID,Bern CarletonORCID,Beria HarshORCID,Brown WendyORCID,Newman Alexander,Beutler Curtis,Williams Kenneth H.

Abstract

Abstract. About 80 % of the precipitation at the Colorado River's headwaters is snow, and the resulting snowmelt-driven hydrograph is a crucial water source for about 40 million people. Snowmelt from alpine and subalpine snowpack contributes substantially to groundwater recharge and river flow. However, the dynamics of snowmelt progression are not well understood because observations of the high-elevation snowpack are difficult due to challenging access in complex mountainous terrain as well as the cost and labor intensity of currently available methods. We present a novel approach to infer the processes and dynamics of high-elevation snowmelt contributions predicated upon stable hydrogen and oxygen isotope ratios observed in streamflow. We show that deuterium-excess (d-excess) values of stream water could serve as a comparatively cost-effective proxy for a catchment-integrated signal of high-elevation snowmelt contributions to catchment runoff. We sampled stable hydrogen and oxygen isotope ratios of the precipitation, snowpack, and stream water in the East River, a headwater catchment of the Colorado River, and the stream water of larger catchments at sites on the Gunnison River and Colorado River. The d-excess of snowpack increased with elevation; the upper subalpine and alpine snowpack (> 3200 m) had substantially higher d-excess compared to lower elevations (< 3200 m) in the study area. The d-excess values of stream water reflected this because d-excess values increased as the higher-elevation snowpack contributed more to stream water generation later in the snowmelt/runoff season. End-member mixing analyses based on the d-excess data showed that the share of high-elevation snowmelt contributions within the snowmelt hydrograph was on average 44 % and generally increased during melt period progression, up to 70 %. The observed pattern was consistent during 6 years for the East River, and a similar relation was found for the larger catchments on the Gunnison and Colorado rivers. High-elevation snowpack contributions were found to be higher for years with lower snowpack and warmer spring temperatures. Thus, we conclude that the d-excess of stream water is a viable proxy to observe changes in high-elevation snowmelt contributions in catchments at various scales. Inter-catchment comparisons and temporal trends of the d-excess of stream water could therefore serve as a catchment-integrated measure to monitor if mountain systems rely on high-elevation water inputs more during snow drought compared to years of average snowpack depths.

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3