Predicting extreme sub-hourly precipitation intensification based on temperature shifts

Author:

Marra FrancescoORCID,Koukoula MarikaORCID,Canale Antonio,Peleg NadavORCID

Abstract

Abstract. Extreme sub-hourly precipitation, typically convective in nature, is capable of triggering natural disasters such as floods and debris flows. A key component of climate change adaptation and resilience is quantifying the likelihood that sub-hourly extreme precipitation will exceed historical levels in future climate scenarios. Despite this, current approaches to estimating future sub-hourly extreme precipitation return levels are deemed insufficient. The reason for this can be attributed to two factors: there is limited availability of data from convection-permitting climate models (capable of simulating sub-hourly precipitation adequately) and the statistical methods we use to extrapolate extreme precipitation return levels do not capture the physics governing global warming. We present a novel physical-based statistical method for estimating the extreme sub-hourly precipitation return levels. The proposed model, named TEmperature-dependent Non-Asymptotic statistical model for eXtreme return levels (TENAX), is based on a parsimonious non-stationary and non-asymptotic theoretical framework that incorporates temperature as a covariate in a physically consistent manner. We first explain the theory and present the TENAX model. Using data from several stations in Switzerland as a case study, we demonstrate the model's ability to reproduce sub-hourly precipitation return levels and some observed properties of extreme precipitation. We then illustrate how the model can be utilized to project changes in extreme sub-hourly precipitation in a future warmer climate only based on climate model projections of temperatures during wet days and on foreseen changes in precipitation frequency. We conclude by discussing the uncertainties associated with the model, its limitations, and its advantages. With the TENAX model, one can project sub-hourly precipitation extremes at different return levels based on daily scale projections from climate models in any location globally where observations of sub-hourly precipitation data and near-surface air temperature are available.

Funder

Fondazione Cassa di Risparmio di Padova e Rovigo

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3