Influence of line mixing on the retrievals of atmospheric CO<sub>2</sub> from spectra in the 1.6 and 2.1 μm regions

Author:

Hartmann J.-M.,Tran H.,Toon G. C.

Abstract

Abstract. We present the first study of the influence of line mixing among CO2 lines on the remote sensing retrieval of atmospheric carbon dioxide. This is done in the bands near 1.6 and 2.1 μm which will be used by the Greenhouse Gases Observatory Satellite (GOSAT) instrument and eventual successors of the Orbiting Carbon Observatory (OCO). A purely theoretical analysis is first made, based on simulations of atmospheric spectra. It shows that line mixing cannot be neglected since disregarding this process induces significant errors in the calculated absorption coefficients, leading to systematic structures in the spectral fit residuals and airmass-dependent biases in the retrieved CO2 amounts. These theoretical predictions are then confirmed by using atmospheric solar-absorption spectra measured by a ground-based Fourier transform spectrometer. It is first shown that including line mixing in the forward model used for the inversion leads to a very significant reduction of the residuals in the 2.1 μm region. Secondly, the inclusion of line mixing reduces the dependence of the retrieved CO2 on the airmass and greatly improves the consistency between values obtained independently from spectra in the 1.6 and 2.1 μm bands. These results open promising prospects for various ground-based and space-borne experiments monitoring the carbon dioxide atmospheric amounts.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference26 articles.

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3