Typhoon-associated air quality over the Guangdong–Hong Kong–Macao Greater Bay Area, China: machine-learning-based prediction and assessment

Author:

Chen YilinORCID,Yang Yuanjian,Gao MengORCID

Abstract

Abstract. The summertime air pollution events endangering public health in the Guangdong–Hong Kong–Macao Greater Bay Area are connected with typhoons. The wind of the typhoon periphery results in poor diffusion conditions and favorable conditions for transboundary air pollution. Random forest models are established to predict typhoon-associated air quality in the area. The correlation coefficients and the root mean square errors in the air quality index (AQI) and PM2.5, PM10, SO2, NO2 and O3 concentrations are 0.84 (14.88), 0.86 (10.31 µg m−3), 0.84 (17.03 µg m−3), 0.51 (8.13 µg m−3), 0.80 (13.64 µg m−3) and 0.89 (22.43 µg m−3), respectively. Additionally, the prediction models for non-typhoon days are established. According to the feature importance output of the models, the differences in the meteorological drivers of typhoon days and non-typhoon days are revealed. On typhoon days, the air quality is dominated by local source emission and accumulation as the sink of pollutants reduces significantly under stagnant weather, while it is dominated by the transportation and scavenging effect of sea breeze on non-typhoon days. Therefore, our findings suggest that different air pollution control strategies for typhoon days and non-typhoon days should be proposed.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3